在线视频国产欧美另类,偷拍亚洲一区一区二区三区,日韩中文字幕在线视频,日本精品久久久久中文字幕

<small id="qpqhz"></small>
  • <legend id="qpqhz"></legend>

      <td id="qpqhz"><strong id="qpqhz"></strong></td>
      <small id="qpqhz"><menuitem id="qpqhz"></menuitem></small>
    1. 數(shù)學(xué)教案《一元一次方程-利用等式的性質(zhì)解方程》

      時間:2021-06-13 18:51:21 教案 我要投稿

      數(shù)學(xué)教案《一元一次方程-利用等式的性質(zhì)解方程》

        一、目的要求 使學(xué)生會用移項(xiàng)解方程。

      數(shù)學(xué)教案《一元一次方程-利用等式的性質(zhì)解方程》

        二、內(nèi)容分析

        從本節(jié)課開始系統(tǒng)講解一元一次方程的解法。解一元一次方程是一個有目的、有根據(jù)、有步驟的變形過程。其目的是將方程最終變?yōu)閤=a的形式;其根據(jù)是等式的性質(zhì)和移項(xiàng)法則,其一般步驟是去分母、去括號、移項(xiàng)、合并、系數(shù)化成1。

        x=a的形式有如下特點(diǎn):

       。1)沒有分母;

        (2)沒有括號;

        (3)未知項(xiàng)在方程的一邊,已知項(xiàng)在方程的另一邊;

        (4)沒有同類項(xiàng);

       。5)未知數(shù)的系數(shù)是1。

        在講方程的解法時,要把所給方程與x=a的形式加以比較,針對它們的不同點(diǎn),采取步驟加以變形。

        根據(jù)方程的特點(diǎn),以x=a的形式為目標(biāo)對原方程進(jìn)行變形,是解一元一次方程的基本思想。

        解方程的第一節(jié)課告訴學(xué)生解方程就是根據(jù)等式的性質(zhì)把原方程逐步變形為x=a的形式就可以了。重點(diǎn)在于引進(jìn)移項(xiàng)這一變形并用它來解方程。

        用等式性質(zhì)1解方程與用移項(xiàng)解方程,效果是一樣的。但移項(xiàng)用起來更方便一些。

        如解方程 7x-2=6x-4

        時,用移項(xiàng)可直接得到 7x-6x=4+2。

        而用等式性質(zhì)1,一般要用兩次:

       。1)兩邊都減去6x; (2)兩邊都加上2。

        因?yàn)橐幌伦哟_定兩邊都加上(-6x+2)不太容易。因此要引進(jìn)移項(xiàng),用移項(xiàng)來解方程。移項(xiàng)實(shí)際上也是用等式的性質(zhì),在引進(jìn)過程中,要結(jié)合教科書第192頁及第193頁的圖強(qiáng)調(diào)移項(xiàng)要變號。移項(xiàng)解方程后的檢驗(yàn),可以驗(yàn)證移項(xiàng)解方程的正確性。

        三、教學(xué)過程()

        復(fù)習(xí)提問:

       。1)敘述等式的性質(zhì)。

       。2)什么叫做方程的解?什么叫做解方程?

        新課講解:

        1.利用等式性質(zhì)1可以解一些方程。例如,方程 x-7=5

        的兩邊都加上7,就可以得到 x=5+7,

        x=12。

        又如方程 7x=6x-4

        的兩邊都減去6x,就可以得到 7x-6x=-4,

        x=-4。

        然后問學(xué)生如何用等式性質(zhì)1解下列方程 3x-2=2x+1。

        2.當(dāng)學(xué)生感覺利用等式性質(zhì)1解方程3x-2=2x+1比較困難時,轉(zhuǎn)而分析解方程x-7=5,7x=6z-4的過程。解這兩個方程道首先把它們變形成未知項(xiàng)在方程的一邊,已知項(xiàng)在方程的另一邊的形式,要達(dá)到這個目的,可以在方程兩邊都加上(或減去)同一個數(shù)或整式。這步變形也相當(dāng)于

        也就是說,方程中的任何一項(xiàng)改變符號后可以從方程的一邊移到另一邊。

        3.利用移項(xiàng)解方程x-7=5和7x=6x-4,并分別寫出檢驗(yàn),要強(qiáng)調(diào)移項(xiàng)時變號,檢驗(yàn)時把數(shù)代入變形前的.方程.

        利用移項(xiàng)解前面提到的方程 3x-2=2x+l

        解:移項(xiàng),得 3x-2x=1+2。①

        合并,得 x=3。

        檢驗(yàn):把x-3分別代入原方程的左邊和右邊,得

        左邊=3×3-2=7, 右邊=2×3+1=7, 左邊=右邊,

        所以x=3是原方程的解。

        在上面解的過程中,由原方程①的移項(xiàng)是指:

       。╨)方程左邊的-2,改變符號后,移到方程的右邊;

        (2)方程右邊的2x,改變符號后,移到方程的左邊。

        在寫方程①時,左邊先寫不移動的項(xiàng)3x(不改變符號),再寫移來的項(xiàng)(改變符號);右邊先寫不移動的項(xiàng)1(不改變符號),再寫移來的項(xiàng)(改變符號),便于檢查。

        課堂練習(xí):教科書第73頁 練習(xí)

        課堂小結(jié):

        1.解方程需要把方程中的項(xiàng)從一邊移到另一邊,移項(xiàng)要變號。

        2.檢驗(yàn)要把數(shù)分別代入原方程的左邊和右邊。

        四、課外作業(yè)

        習(xí)題2.1 P73 復(fù)習(xí)鞏固

      【數(shù)學(xué)教案《一元一次方程-利用等式的性質(zhì)解方程》】相關(guān)文章:

      《等式的性質(zhì)和解方程(1)》蘇教版五年級下數(shù)學(xué)教案06-11

      不等式的性質(zhì)數(shù)學(xué)教案10-11

      等式的基本性質(zhì)數(shù)學(xué)教案09-07

      等式性質(zhì)和不等式性質(zhì)的區(qū)別10-08

      等式的性質(zhì)的說課稿06-15

      《等式的性質(zhì)》的說課稿01-11

      等式的性質(zhì)說課稿10-31

      《等式的性質(zhì)》的說課稿05-12

      等式的性質(zhì)說課稿07-11