在线视频国产欧美另类,偷拍亚洲一区一区二区三区,日韩中文字幕在线视频,日本精品久久久久中文字幕

<small id="qpqhz"></small>
  • <legend id="qpqhz"></legend>

      <td id="qpqhz"><strong id="qpqhz"></strong></td>
      <small id="qpqhz"><menuitem id="qpqhz"></menuitem></small>
    1. 四年級下學(xué)期數(shù)學(xué)知識點總結(jié)

      時間:2024-06-24 13:14:55 飛宇 總結(jié) 我要投稿
      • 相關(guān)推薦

      四年級下學(xué)期數(shù)學(xué)知識點總結(jié)

        總結(jié)就是把一個時段的學(xué)習(xí)、工作或其完成情況進行一次全面系統(tǒng)的總結(jié),通過它可以正確認識以往學(xué)習(xí)和工作中的優(yōu)缺點,因此我們要做好歸納,寫好總結(jié)。你所見過的總結(jié)應(yīng)該是什么樣的?以下是小編精心整理的四年級下學(xué)期數(shù)學(xué)知識點總結(jié),希望能夠幫助到大家。

      四年級下學(xué)期數(shù)學(xué)知識點總結(jié)

        四年級下學(xué)期數(shù)學(xué)知識點總結(jié) 1

        一、加減法運算定律:

        1、加法交換律:a+b=b+a

        2、加法結(jié)合律:(a+b)+c=a+(b+c)

        3、連減的性質(zhì): a-b-c=a-(b+c)。

        二、乘除法運算定律:

        1、乘法交換律:。axb=bxa

        2、乘法結(jié)合律:(axb)x c = ax (bxc )

        3、乘法分配律:

       。1)兩個數(shù)的和與一個數(shù)相乘:(a+b)xc=axc+bxc(a-b)xc=axc-bxc

       。2)兩個數(shù)的差與一個數(shù)相乘:(a-b)xc=axc-bxc。

        4、除法的性質(zhì):a÷b÷c=a÷(bxc)。

        5、乘法分配律的應(yīng)用:

        ①類型一:(a+b)xc= axc+bxc (a-b)xc= axc-bxc

       、陬愋投篴xc+bxc=(a+b)xcaxc-bxc=(a-b)xc

        ③類型三:ax99+a = ax(99+1)axb-a= ax(b-1)

       、茴愋退模篴x99 ax102

        = ax(100-1)= ax(100+2)

        = ax100-ax1 = ax100+ax2

        6、商不變性質(zhì):a÷b=(axc)÷(bxc),a÷b=(a÷c)÷(b÷c)。

        三、簡便計算

        連減的'簡便計算:

       、龠B續(xù)減去幾個數(shù)就等于減去這幾個數(shù)的和。如:106-26-74=106-(26+74)

        四年級下學(xué)期數(shù)學(xué)知識點總結(jié) 2

        運算定律及簡便運算

        一、加法運算定律:

        1、加法交換律:兩個數(shù)相加,交換加數(shù)的位置,和不變。a+b=b+a

        2、加法結(jié)合律:三個數(shù)相加,可以先把前兩個數(shù)相加,再加上第三個數(shù);或者先把后兩個數(shù)相加,再加上第一個數(shù),和不變。(a+b)+c=a+b+c

        加法的這兩個定律往往結(jié)合起來一起使用。

        如:165+93+35=93+(165+35)依據(jù)是什么?

        3、連減的性質(zhì):一個數(shù)連續(xù)減去兩個數(shù),等于這個數(shù)減去那兩個數(shù)的和。a-b-c=a-b+c

        二、乘法運算定律:

        1、乘法交換律:兩個數(shù)相乘,交換因數(shù)的位置,積不變。axb=bxa

        2、乘法結(jié)合律:三個數(shù)相乘,可以先把前兩個數(shù)相乘,再乘以第三個數(shù),也可以先把后兩個數(shù)相乘,再乘以第一個數(shù),積不變。(axb)xc=axbxc

        乘法的這兩個定律往往結(jié)合起來一起使用。如:125x78x8的簡算

        3、乘法分配律:兩個數(shù)的和與一個數(shù)相乘,可以先把這兩個數(shù)分別與這個數(shù)相乘,再把積相加。

       。╝+b)xc=axc+bxc a-bxc=axc-bxc

        雞兔問題公式

       。1)已知總頭數(shù)和總腳數(shù),求雞、兔各多少:

        (總腳數(shù)-每只雞的腳數(shù)x總頭數(shù))÷(每只兔的腳數(shù)-每只雞的腳數(shù))=兔數(shù);

        總頭數(shù)-兔數(shù)=雞數(shù)。

        或者是(每只兔腳數(shù)x總頭數(shù)-總腳數(shù))÷(每只兔腳數(shù)-每只雞腳數(shù))=雞數(shù);

        總頭數(shù)-雞數(shù)=兔數(shù)。

        例如,“有雞、兔共36只,它們共有腳100只,雞、兔各是多少只?”

        解一(100-2x36)÷(4-2)=14(只)………兔;

        36-14=22(只)……………………………雞。

        解二(4x36-100)÷(4-2)=22(只)………雞;

        36-22=14(只)…………………………兔。

        (答略)

       。2)已知總頭數(shù)和雞兔腳數(shù)的差數(shù),當雞的總腳數(shù)比兔的總腳數(shù)多時,可用公式

       。恐浑u腳數(shù)x總頭數(shù)-腳數(shù)之差)÷(每只雞的腳數(shù)+每只兔的腳數(shù))=兔數(shù);

        總頭數(shù)-兔數(shù)=雞數(shù)

        或(每只兔腳數(shù)x總頭數(shù)+雞兔腳數(shù)之差)÷(每只雞的腳數(shù)+每只免的腳數(shù))=雞數(shù);

        總頭數(shù)-雞數(shù)=兔數(shù)。(例略)

       。3)已知總數(shù)與雞兔腳數(shù)的差數(shù),當兔的總腳數(shù)比雞的總腳數(shù)多時,可用公式。

       。恐浑u的腳數(shù)x總頭數(shù)+雞兔腳數(shù)之差)÷(每只雞的腳數(shù)+每只兔的腳數(shù))=兔數(shù);

        總頭數(shù)-兔數(shù)=雞數(shù)。

        或(每只兔的腳數(shù)x總頭數(shù)-雞兔腳數(shù)之差)÷(每只雞的腳數(shù)+每只兔的腳數(shù))=雞數(shù);

        總頭數(shù)-雞數(shù)=兔數(shù)。(例略)

       。4)得失問題(雞兔問題的'推廣題)的解法,可以用下面的公式:

       。1只合格品得分數(shù)x產(chǎn)品總數(shù)-實得總分數(shù))÷(每只合格品得分數(shù)+每只不合格品扣分數(shù))=不合格品數(shù)。或者是總產(chǎn)品數(shù)-(每只不合格品扣分數(shù)x總產(chǎn)品數(shù)+實得總分數(shù))÷(每只合格品得分數(shù)+每只不合格品扣分數(shù))=不合格品數(shù)。

        例如,“燈泡廠生產(chǎn)燈泡的工人,按得分的多少給工資。每生產(chǎn)一個合格品記4分,每生產(chǎn)一個不合格品不僅不記分,還要扣除15分。某工人生產(chǎn)了1000只燈泡,共得3525分,問其中有多少個燈泡不合格?”

        解一(4x1000-3525)÷(4+15)

        =475÷19=25(個)

        解二1000-(15x1000+3525)÷(4+15)

       。1000-18525÷19

        =1000-975=25(個)(答略)

        (“得失問題”也稱“運玻璃器皿問題”,運到完好無損者每只給運費xx元,破損者不僅不給運費,還需要賠成本xx元……。它的解法顯然可套用上述公式。)

       。5)雞兔互換問題(已知總腳數(shù)及雞兔互換后總腳數(shù),求雞兔各多少的問題),可用下面的公式:

        〔(兩次總腳數(shù)之和)÷(每只雞兔腳數(shù)和)+(兩次總腳數(shù)之差)÷(每只雞兔腳數(shù)之差)〕÷2=雞數(shù);

        〔(兩次總腳數(shù)之和)÷(每只雞兔腳數(shù)之和)-(兩次總腳數(shù)之差)÷(每只雞兔腳數(shù)之差)〕÷2=兔數(shù)。

        例如,“有一些雞和兔,共有腳44只,若將雞數(shù)與兔數(shù)互換,則共有腳52只。雞兔各是多少只?”

        解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2

        =20÷2=10(只)……………………………雞

        〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2

        =12÷2=6(只)…………………………兔(答略)

        雞兔同籠

        1、雞兔同籠屬于假設(shè)問題,假設(shè)的和最后結(jié)果相反。

        2、“雞兔同籠”問題的解題方法

        假設(shè)法:

        ①假如都是兔

       、诩偃缍际请u

        ③古人“抬腳法”:

        解答思路:

        假如每只雞、每只兔各抬起一半的腳,則每只雞就變成了“獨腳雞”,每只兔就變成了“雙腳兔”。這樣,雞和兔的腳的總數(shù)就少了一半。這種思維方法叫化歸法。

        3、公式:

        雞兔總腳數(shù)÷2-雞兔總數(shù)=兔的只數(shù);

        雞兔總數(shù)-兔的只數(shù)=雞的只數(shù)。

        四則運算

        1、加法、減法、乘法和除法統(tǒng)稱四則運算。

        2、在沒有括號的算式里,如果只有加、減法或者只有乘、除法,都要從左往右按順序計算。

        3、在沒有括號的算式里,有乘、除法和加、減法、要先算乘除法,再算加減法。

        4、算式有括號,要先算括號里面的,再算括號外面的;括號里面的算式計算順序遵循以上的計算順序。

        5、先乘除,后加減,有括號,提前算

        關(guān)于“0”的運算

        1、“0”不能做除數(shù); 字母表示:a÷0錯誤

        2、一個數(shù)加上0還得原數(shù); 字母表示:a+0=a

        3、一個數(shù)減去0還得原數(shù); 字母表示:a-0=a

        4、被減數(shù)等于減數(shù),差是0; 字母表示:a-a=0

        5、一個數(shù)和0相乘,仍得0; 字母表示:ax0=0

        6、0除以任何非0的數(shù),還得0; 字母表示:0÷a(a≠0)=0

        7、0÷0得不到固定的商; 5÷0得不到商.(無意義)

        四年級下學(xué)期數(shù)學(xué)知識點總結(jié) 3

        (一)口算除法

        1、整十數(shù)除整十數(shù)或幾百幾十的數(shù)的口算方法。

        (1)算除法,想乘法;比如60÷30=( )就可以想(2)x30=60

        (2)利用表內(nèi)除法計算。利用除法運算的性質(zhì):將被除數(shù)和除數(shù)同時擴大或縮小相同的倍數(shù),商不變。如:200÷50想20÷5=4,所以200÷50=4。

        2、兩位數(shù)除兩位數(shù)或三位數(shù)的估算方法:除法估算一般是把算式中不是整十數(shù)或幾百幾十的數(shù)用“四舍五入”法估算成整十數(shù)或幾百幾十的數(shù),再進行口算。注意結(jié)果用“≈”號。

        (二)筆算除法

        1、除數(shù)是兩位數(shù)的筆算除法計算方法:從被除數(shù)的高位除起,先用除數(shù)試除被除數(shù)的前兩位,如果前兩位數(shù)比除數(shù)小,就看前三位。除到被除數(shù)的哪一位,商就寫在那一位的上面。每次除后余下的數(shù)必須比除數(shù)小。

        2、除數(shù)不是整十數(shù)的兩位數(shù)的除法的試商方法:如果除數(shù)是一個接近整十數(shù)的兩位數(shù),就用“四舍五入”法把除數(shù)看做與它接近的整十數(shù)試商,也可以把除數(shù)看做與它接近的幾十五,再利用一位數(shù)的乘法直接確定商。

        3、商一位數(shù):

        (1)兩位數(shù)除以整十數(shù),如:62÷30;

        (2)三位數(shù)除以整十數(shù),如:364÷70

        (3)兩位數(shù)除以兩位數(shù),如:90÷29(把29看做30來試商)

        (4)三位數(shù)除以兩位數(shù),如:324÷81(把81看做80來試商)

        (5)三位數(shù)除以兩位數(shù),如:104÷26(把26看做25來試商)

        (6)同頭無除商―,如:404÷42(被除數(shù)的位和除數(shù)的位一樣,即“同頭”,被除數(shù)的前兩位除以除數(shù)不夠除,即“無除”,不是商8就是商9。)

        (7)除數(shù)折半商四五,如:252÷48(除數(shù)48的一半24,和被除數(shù)的前兩位25很接近,不是商4就是商5。)

        4、商兩位數(shù):(三位數(shù)除以兩位數(shù))

        (1)前兩位有余數(shù),如:576÷18

        (2)前兩位沒有余數(shù),如:930÷31

        5、判斷商的位數(shù)的方法:

        被除數(shù)的前兩位除以除數(shù)不夠除,商是一位數(shù);被除數(shù)的前兩位除以除數(shù)夠除,商是兩位數(shù)。

        (三)商的變化規(guī)律

        1、商變化:

        (1)被除數(shù)不變,除數(shù)乘(或除以)幾(0除外),商就除以(或乘)相同的數(shù)。

        (2)除數(shù)不變,被除數(shù)乘(或除以)幾(0除外)商也乘(或除以)相同的數(shù)。

        2、商不變:被除數(shù)和除數(shù)同時乘(或除以)相同的數(shù)(0除外),商不變。

        (四)簡便計算:同時去掉同樣多的0,如9100÷700=91÷7=13

        小學(xué)數(shù)學(xué)如何解題

        1、首先是精選題目,做到少而精。只有解決質(zhì)量高的、有代表性的題目才能達到事半功倍的效果。然而絕大多數(shù)的同學(xué)還沒有辨別、分析題目好壞的能力,這就需要在老師的指導(dǎo)下來選擇復(fù)習(xí)的練習(xí)題,以了解高考題的形式、難度。

        2、其次是分析題目。解答任何一個數(shù)學(xué)題目之前,都要先進行分析。相對于比較難的題目,分析更顯得尤為重要。我們知道,解決數(shù)學(xué)問題實際上就是在題目的已知條件和待求結(jié)論中架起聯(lián)系的橋梁,也就是在分析題目中已知與待求之間差異的基礎(chǔ)上,化歸和消除這些差異。當然在這個過程中也反映出對數(shù)學(xué)基礎(chǔ)知識掌握的熟練程度、理解程度和數(shù)學(xué)方法的靈活應(yīng)用能力。例如,許多三角方面的題目都是把角、函數(shù)名、結(jié)構(gòu)形式統(tǒng)一后就可以解決問題了,而選擇怎樣的三角公式也是成敗的'關(guān)鍵。

        3、最后,題目總結(jié)。解題不是目的,我們是通過解題來檢驗我們的學(xué)習(xí)效果,發(fā)現(xiàn)學(xué)習(xí)中的不足的,以便改進和提高。因此,解題后的總結(jié)至關(guān)重要,這正是我們學(xué)習(xí)的大好機會。對于一道完成的題目,有以下幾個方面需要總結(jié):

       、僭谥R方面,題目中涉及哪些概念、定理、公式等基礎(chǔ)知識,在解題過程中是如何應(yīng)用這些知識的。

       、谠诜椒ǚ矫妫喝绾稳胧值,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應(yīng)用。

       、勰懿荒馨呀忸}過程概括、歸納成幾個步驟(比如用數(shù)學(xué)歸納法證明題目就有很明顯的三個步驟)。

        ④能不能歸納出題目的類型,進而掌握這類題目的解題通法(我們反對老師把現(xiàn)成的題目類型給學(xué)生,讓學(xué)生拿著題目套類型,但我們鼓勵學(xué)生自己總結(jié)、歸納題目類型)。

      【四年級下學(xué)期數(shù)學(xué)知識點總結(jié)】相關(guān)文章:

      初一數(shù)學(xué)下學(xué)期知識點總結(jié)08-11

      數(shù)學(xué)的知識點總結(jié)04-16

      中考數(shù)學(xué)的知識點總結(jié)05-22

      初中數(shù)學(xué)的知識點總結(jié)12-12

      數(shù)學(xué)知識點總結(jié)11-07

      初中數(shù)學(xué)的知識點總結(jié)03-11

      化學(xué)下學(xué)期知識點總結(jié)11-02

      四年級數(shù)學(xué)的知識點總結(jié)06-10

      初中數(shù)學(xué)《整式》知識點總結(jié)10-21