在线视频国产欧美另类,偷拍亚洲一区一区二区三区,日韩中文字幕在线视频,日本精品久久久久中文字幕

<small id="qpqhz"></small>
  • <legend id="qpqhz"></legend>

      <td id="qpqhz"><strong id="qpqhz"></strong></td>
      <small id="qpqhz"><menuitem id="qpqhz"></menuitem></small>
    1. 初中數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)

      時(shí)間:2024-12-09 17:59:27 秀雯 知識(shí)點(diǎn)總結(jié) 我要投稿

      初中數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)大全

        上學(xué)的時(shí)候,說起知識(shí)點(diǎn),應(yīng)該沒有人不熟悉吧?知識(shí)點(diǎn)是知識(shí)中的最小單位,最具體的內(nèi)容,有時(shí)候也叫“考點(diǎn)”。哪些才是我們真正需要的知識(shí)點(diǎn)呢?以下是小編收集整理的初中數(shù)學(xué)的知識(shí)點(diǎn)總結(jié),僅供參考,希望能夠幫助到大家。

      初中數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)大全

        關(guān)于角的知識(shí)點(diǎn)

        一、角的定義

        “靜態(tài)”概念:有公共端點(diǎn)的兩條射線組成的圖形叫做角。

        “動(dòng)態(tài)”概念:角可以看作是一條射線繞其端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。

        如果一個(gè)角的兩邊成一條直線,那么這個(gè)角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。

        二、角的換算:1周角=2平角=4直角=360°;

        1平角=2直角=180°;

        1直角=90°;

        1度=60分=3600秒(即:1°=60′=3600″);

        1分=60秒(即:1′=60″).

        三、余角、補(bǔ)角的概念和性質(zhì):

        概念:如果兩個(gè)角的和是一個(gè)平角,那么這兩個(gè)角叫做互為補(bǔ)角。

        如果兩個(gè)角的和是一個(gè)直角,那么這兩個(gè)角叫做互為余角。

        說明:互補(bǔ)、互余是指兩個(gè)角的數(shù)量關(guān)系,沒有位置關(guān)系。

        性質(zhì):同角(或等角)的余角相等;

        同角(或等角)的補(bǔ)角相等。

        四、角的比較方法:

        角的大小比較,有兩種方法:

        (1)度量法(利用量角器);

        (2)疊合法(利用圓規(guī)和直尺)。

        五、角平分線:

        從一個(gè)角的頂點(diǎn)引出的一條射線。把這個(gè)角分成相等的兩部分,這條射線叫做這個(gè)角的平分線。

        常見考法

        (1)考查與時(shí)鐘有關(guān)的問題;

        (2)角的計(jì)算與度量。

        誤區(qū)提醒

        角的度、分、秒單位的換算是60進(jìn)制,而不是10進(jìn)制,換算時(shí)易受10進(jìn)制影響而出錯(cuò)。

        【典型例題】(20xx云南曲靖)從3時(shí)到6時(shí),鐘表的時(shí)針旋轉(zhuǎn)角的度數(shù)是( )

        【答案】3時(shí)到6時(shí),時(shí)針旋轉(zhuǎn)的是一個(gè)周角的1/4,故是90度,本題選C.

        角的知識(shí)點(diǎn)

        三角和的公式

        sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

        cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

        tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

        倍角公式

        tan2A = 2tanA/(1-tan2 A)

        Sin2A=2SinA?CosA

        Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A

        三倍角公式

        sin3A = 3sinA-4(sinA)3;

        cos3A = 4(cosA)3 -3cosA

        tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

        三角函數(shù)特殊值

        α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

        α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

        α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

        a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

        α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

        α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

        α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

        α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

        α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

        α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

        α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

        α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

        三角函數(shù)記憶順口溜

        1三角函數(shù)記憶口訣

        “奇、偶”指的是π/2的倍數(shù)的奇偶,“變與不變”指的是三角函數(shù)的名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號(hào)看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號(hào)還是負(fù)號(hào)。

        以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號(hào)為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區(qū)間(π/2,π)上小于零,所以右邊符號(hào)為負(fù),所以右邊為-sinα。

        2符號(hào)判斷口訣

        全,S,T,C,正。這五個(gè)字口訣的意思就是說:第一象限內(nèi)任何一個(gè)角的四種三角函數(shù)值都是“+”;第二象限內(nèi)只有正弦是“+”,其余全部是“-”;第三象限內(nèi)只有正切是“+”,其余全部是“-”;第四象限內(nèi)只有余弦是“+”,其余全部是“-”。

        也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是對(duì)應(yīng)象限三角函數(shù)為正值的名稱。口訣中未提及的都是負(fù)值。

        “ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過來寫所占的象限對(duì)應(yīng)的三角函數(shù)為正值。

        3三角函數(shù)順口溜

        三角函數(shù)是函數(shù),象限符號(hào)坐標(biāo)注。函數(shù)圖像單位圓,周期奇偶增減現(xiàn)。

        同角關(guān)系很重要,化簡證明都需要。正六邊形頂點(diǎn)處,從上到下弦切割;

        中心記上數(shù)字一,連結(jié)頂點(diǎn)三角形。向下三角平方和,倒數(shù)關(guān)系是對(duì)角,

        頂點(diǎn)任意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負(fù)化正后大化小,

        變成銳角好查表,化簡證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,

        將其后者視銳角,符號(hào)原來函數(shù)判。兩角和的余弦值,化為單角好求值,

        余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。

        計(jì)算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡易變。

        逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。

        萬能公式不一般,化為有理式居先。公式順用和逆用,變形運(yùn)用加巧用;

        一加余弦想余弦,一減余弦想正弦,冪升一次角減半,升冪降次它為范;

        三角函數(shù)反函數(shù),實(shí)質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;

        利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。

        知識(shí)點(diǎn)總結(jié)

        1.定義:兩組對(duì)邊分別平行的四邊形叫平行四邊形

        2.平行四邊形的性質(zhì)

       。1)平行四邊形的對(duì)邊平行且相等;

       。2)平行四邊形的鄰角互補(bǔ),對(duì)角相等;

        (3)平行四邊形的對(duì)角線互相平分;

        3.平行四邊形的判定

        平行四邊形是幾何中一個(gè)重要內(nèi)容,如何根據(jù)平行四邊形的性質(zhì),判定一個(gè)四邊形是平行四邊形是個(gè)重點(diǎn),下面就對(duì)平行四邊形的五種判定方法,進(jìn)行劃分:

        第一類:與四邊形的對(duì)邊有關(guān)

        (1)兩組對(duì)邊分別平行的四邊形是平行四邊形;

       。2)兩組對(duì)邊分別相等的四邊形是平行四邊形;

       。3)一組對(duì)邊平行且相等的四邊形是平行四邊形;

        第二類:與四邊形的對(duì)角有關(guān)

       。1)兩組對(duì)角分別相等的四邊形是平行四邊形;

        第三類:與四邊形的對(duì)角線有關(guān)

        (1)對(duì)角線互相平分的四邊形是平行四邊形

        常見考法

       。1)利用平行四邊形的性質(zhì),求角度、線段長、周長;

        (2)求平行四邊形某邊的取值范圍;

       。3)考查一些綜合計(jì)算問題;

       。4)利用平行四邊形性質(zhì)證明角相等、線段相等和直線平行;

       。5)利用判定定理證明四邊形是平行四邊形。

        誤區(qū)提醒

       。1)平行四邊形的性質(zhì)較多,易把對(duì)角線互相平分,錯(cuò)記成對(duì)角線相等;

       。2)“一組對(duì)邊平行且相等的四邊形是平行四邊形”錯(cuò)記成“一組對(duì)邊平行,一組對(duì)邊相等的四邊形是平行四邊形”后者不是平行四邊形的判定定理,它只是個(gè)等腰梯形。

        誘導(dǎo)公式的本質(zhì)

        所謂三角函數(shù)誘導(dǎo)公式,就是將角n(/2)的三角函數(shù)轉(zhuǎn)化為角的三角函數(shù)。

        常用的誘導(dǎo)公式

        公式一:設(shè)為任意角,終邊相同的角的同一三角函數(shù)的值相等:

        sin(2k)=sin kz

        cos(2k)=cos kz

        tan(2k)=tan kz

        cot(2k)=cot kz

        公式二:設(shè)為任意角,的三角函數(shù)值與的三角函數(shù)值之間的關(guān)系:

        sin()=-sin

        cos()=-cos

        tan()=tan

        cot()=cot

        公式三:任意角與-的三角函數(shù)值之間的關(guān)系:

        sin(-)=-sin

        cos(-)=cos

        tan(-)=-tan

        cot(-)=-cot

        公式四:利用公式二和公式三可以得到與的三角函數(shù)值之間的關(guān)系:

        sin()=sin

        cos()=-cos

        tan()=-tan

        cot()=-cot

        知識(shí)要點(diǎn):梯形的中位線平行于兩底,并且等于兩底和的一半。

        1.中位線概念

        (1)三角形中位線定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。

        (2)梯形中位線定義:連結(jié)梯形兩腰中點(diǎn)的線段叫做梯形的中位線。

        注意:

        (1)要把三角形的中位線與三角形的中線區(qū)分開。三角形中線是連結(jié)一頂點(diǎn)和它對(duì)邊的中點(diǎn),而三角形中位線是連結(jié)三角形兩邊中點(diǎn)的線段。

        (2)梯形的中位線是連結(jié)兩腰中點(diǎn)的線段而不是連結(jié)兩底中點(diǎn)的線段。

        (3)兩個(gè)中位線定義間的聯(lián)系:可以把三角形看成是上底為零時(shí)的梯形,這時(shí)梯形的中位線就變成三角形的中位線。

        2.中位線定理

        (1)三角形中位線定理:三角形的中位線平行于第三邊并且等于它的一半.

        三角形兩邊中點(diǎn)的連線(中位線)平行于第BC邊,且等于第三邊的一半。

        知識(shí)要領(lǐng)總結(jié):三角形的中位線所構(gòu)成的小三角形(中點(diǎn)三角形)面積是原三角形面積的四分之一。

        初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系

        下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

        平面直角坐標(biāo)系

        平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

        水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

        平面直角坐標(biāo)系的要素:

       、僭谕黄矫

       、趦蓷l數(shù)軸

        ③互相垂直

       、茉c(diǎn)重合

        三個(gè)規(guī)定:

        ①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

        ②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

       、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

        相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

        初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成

        對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

        平面直角坐標(biāo)系的構(gòu)成

        在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

        通過上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

        初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)

        下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

        點(diǎn)的坐標(biāo)的性質(zhì)

        建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。

        對(duì)于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。

        一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

        希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績的。

        初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟

        關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。

        因式分解的一般步驟

        如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,

        通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

        注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。

        相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績。

        初中數(shù)學(xué)知識(shí)點(diǎn):因式分解

        下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。

        因式分解

        因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。

        因式分解要素:

        ①結(jié)果必須是整式

       、诮Y(jié)果必須是積的形式

        ③結(jié)果是等式

       、芤蚴椒纸馀c整式乘法的關(guān)系:m(a+b+c)

        公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。

        公因式確定方法:

        ①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。

        ②相同字母取最低次冪

       、巯禂(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。

        提取公因式步驟:

       、俅_定公因式。

       、诖_定商式

        ③公因式與商式寫成積的形式。

        分解因式注意;

        ①不準(zhǔn)丟字母

       、诓粶(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)

        ③雙重括號(hào)化成單括號(hào)

        ④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列

       、菹嗤蚴綄懗蓛绲男问

       、奘醉(xiàng)負(fù)號(hào)放括號(hào)外

        ⑦括號(hào)內(nèi)同類項(xiàng)合并。

        通過上面對(duì)因式分解內(nèi)容知識(shí)的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。

        一次函數(shù):知識(shí)點(diǎn)

        主要考察內(nèi)容:

       、贂(huì)畫一次函數(shù)的圖像,并掌握其性質(zhì)。

       、跁(huì)根據(jù)已知條件,利用待定系數(shù)法確定一次函數(shù)的解析式。

       、勰苡靡淮魏瘮(shù)解決實(shí)際問題。

       、芸疾煲籭c函數(shù)與二元一次方程組,一元一次不等式的關(guān)系。

        突破方法:

       、僬_理解掌握一次函數(shù)的概念,圖像和性質(zhì)。

        ②運(yùn)用數(shù)學(xué)結(jié)合的思想解與一次函數(shù)圖像有關(guān)的問題。

        ③掌握用待定系數(shù)法球一次函數(shù)解析式。

        ④做一些綜合題的訓(xùn)練,提高分析問題的能力。

        函數(shù)性質(zhì):

        1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k.即:y=kx+b(k,b為常數(shù),k≠0),∵當(dāng)x增加m,k(x+m)+b=y+km,km/m=k。

        2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的點(diǎn),坐標(biāo)為(0,b)。

        3當(dāng)b=0時(shí)(即y=kx),一次函數(shù)圖像變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。

        4.在兩個(gè)一次函數(shù)表達(dá)式中:

        當(dāng)兩一次函數(shù)表達(dá)式中的k相同,b也相同時(shí),兩一次函數(shù)圖像重合;當(dāng)兩一次函數(shù)表達(dá)式中的k相同,b不相同時(shí),兩一次函數(shù)圖像平行;當(dāng)兩一次函數(shù)表達(dá)式中的k不相同,b不相同時(shí),兩一次函數(shù)圖像相交;當(dāng)兩一次函數(shù)表達(dá)式中的k不相同,b相同時(shí),兩一次函數(shù)圖像交于y軸上的同一點(diǎn)(0,b)。若兩個(gè)變量x,y間的關(guān)系式可以表示成Y=KX+b(k,b為常數(shù),k不等于0)則稱y是x的一次函數(shù)圖像性質(zhì)

        1、作法與圖形:通過如下3個(gè)步驟:

       。1)列表.

        (2)描點(diǎn);[一般取兩個(gè)點(diǎn),根據(jù)“兩點(diǎn)確定一條直線”的道理,也可叫“兩點(diǎn)法”。一般的y=kx+b(k≠0)的圖象過(0,b)和(-b/k,0)兩點(diǎn)畫直線即可。

        正比例函數(shù)y=kx(k≠0)的圖象是過坐標(biāo)原點(diǎn)的一條直線,一般。0,0)和(1,k)兩點(diǎn)。(3)連線,可以作出一次函數(shù)的圖象一條直線。因此,作一次函數(shù)的圖象只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖象與x軸和y軸的交點(diǎn)分別是-k分之b與0,0與b).

        2、性質(zhì):

       。1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b(k≠0)。

       。2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像都是過原點(diǎn)。

        3、函數(shù)不是數(shù),它是指某一變化過程中兩個(gè)變量之間的關(guān)系。

        4、k,b與函數(shù)圖像所在象限:

        y=kx時(shí)(即b等于0,y與x成正比例):

        當(dāng)k>0時(shí),直線必通過第一、三象限,y隨x的增大而增大;當(dāng)k0,b>0,這時(shí)此函數(shù)的圖象經(jīng)過第一、二、三象限;當(dāng)k>0,b

        圓的知識(shí)點(diǎn)

        1、不在同一直線上的三點(diǎn)確定一個(gè)圓。

        2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

        推論1

        ①(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

        ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧

       、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

        推論2

        圓的兩條平行弦所夾的弧相等

        3、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

        4、圓是定點(diǎn)的距離等于定長的點(diǎn)的集合

        5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

        6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

        7、同圓或等圓的半徑相等

        8、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓

        9、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

        10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。

        11、定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

        12、①直線L和⊙O相交d

       、谥本L和⊙O相切d=r

        ③直線L和⊙O相離d>r

        13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

        14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點(diǎn)的半徑

        15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

        16、推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

        17、切線長定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角

        18、圓的外切四邊形的兩組對(duì)邊的和相等,外角等于內(nèi)對(duì)角

        19、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

        20、

       、賰蓤A外離d>R+r

        ②兩圓外切d=R+r

       、蹆蓤A相交R-rr)

       、軆蓤A內(nèi)切d=R-r(R>r)

       、輧蓤A內(nèi)含dr)

        初中圓的知識(shí)點(diǎn)

        1、圓是定點(diǎn)的距離等于定長的點(diǎn)的集合

        2、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

        3、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

        4、同圓或等圓的半徑相等

        5、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓

        6、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線

        7、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

        8、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

        9、定理不在同一直線上的三點(diǎn)確定一個(gè)圓。

        10、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

        11、推論1:

       、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對(duì)的兩條弧

       、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對(duì)的兩條弧

       、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

        12、推論2:圓的兩條平行弦所夾的弧相等

        13、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

        14、定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

        15、推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

        16、定理:一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

        17、推論:1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

        18、推論:2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑

        19、推論:3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

        20、定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

        21、①直線L和⊙O相交dr

        ②直線L和⊙O相切d=r

       、壑本L和⊙O相離dr

        22、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

        23、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑

        24、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

        25、推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

        26、切線長定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等圓心和這一點(diǎn)的連線平分兩條切線的夾角

        27、圓的外切四邊形的兩組對(duì)邊的和相等

        28、弦切角定理:弦切角等于它所夾的弧對(duì)的圓周角

        29、推論:如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

        30、相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等

        31、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

        32、切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)

        33、推論:從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等

        34、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

        35、①兩圓外離dR+r

       、趦蓤A外切d=R+r

       、蹆蓤A相交R—rdR+r(Rr)

       、軆蓤A內(nèi)切d=R—r(Rr)

       、輧蓤A內(nèi)含dR—r(Rr)

        36、定理:相交兩圓的連心線垂直平分兩圓的公共弦

        37、定理:把圓分成n(n≥3):

       、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

        ⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

        38、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

        39、正n邊形的每個(gè)內(nèi)角都等于(n—2)×180°/n

        40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

        41、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長

        42、正三角形面積√3a/4a表示邊長

        43、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k(n—2)180°/n=360°化為(n—2)(k—2)=444、弧長計(jì)算公式:L=n兀R/180

        45、扇形面積公式:S扇形=n兀R^2/360=LR/246、內(nèi)公切線長=d—(R—r)外公切線長=d—(R+r)

        初中一元一次方程的知識(shí)點(diǎn)

        1.一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程。

        2.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0)。

        3.一元一次方程解法的一般步驟:整理方程……去分母……去括號(hào)……移項(xiàng)……合并同類項(xiàng)……系數(shù)化為1 ……(檢驗(yàn)方程的解)。

        4.列一元一次方程解應(yīng)用題:

        (1)讀題分析法:多用于“和,差,倍,分問題”

        仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套—————”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程。

       。2)畫圖分析法:多用于“行程問題”

        利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ)。

        11.列方程解應(yīng)用題的常用公式:

       。1)行程問題:距離=速度·時(shí)間;

       。2)工程問題:工作量=工效·工時(shí);

       。3)比率問題:部分=全體·比率;

        (4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;

       。5)商品價(jià)格問題:售價(jià)=定價(jià)·折·,利潤=售價(jià)—成本,;

        (6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,

        S正方形=a2,S環(huán)形=π(R2—r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐= πR2h。

        本章內(nèi)容是代數(shù)學(xué)的核心,也是所有代數(shù)方程的基礎(chǔ)。豐富多彩的問題情境和解決問題的快樂很容易激起學(xué)生對(duì)數(shù)學(xué)的樂趣,所以要注意引導(dǎo)學(xué)生從身邊的問題研究起,進(jìn)行有效的數(shù)學(xué)活動(dòng)和合作交流,讓學(xué)生在主動(dòng)學(xué)習(xí)、探究學(xué)習(xí)的過程中獲得知識(shí),提升能力,體會(huì)數(shù)學(xué)思想方法。

        初中圖形的知識(shí)點(diǎn)

        第一章 豐富的圖形世界

        1、幾何圖形

        從實(shí)物中抽象出來的各種圖形,包括立體圖形和平面圖形。

        2、點(diǎn)、線、面、體

        (1)幾何圖形的組成

        點(diǎn):線和線相交的地方是點(diǎn),它是幾何圖形中最基本的圖形。

        線:面和面相交的地方是線,分為直線和曲線。

        面:包圍著體的是面,分為平面和曲面。

        體:幾何體也簡稱體。

        (2)點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。

        3、生活中的立體圖形

        生活中的立體圖形

        柱:棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、……

        正有理數(shù) 整數(shù)

        有理數(shù) 零 有理數(shù)

        負(fù)有理數(shù) 分?jǐn)?shù)

        2、相反數(shù):只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零

        3、數(shù)軸:規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時(shí),三要素缺一不可)。任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示。

        4、倒數(shù):如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。

        5、絕對(duì)值:在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離,叫做該數(shù)的絕對(duì)值,(|a|≥0)。若|a|=a,則a≥0;若|a|=-a,則a≤0。

        正數(shù)的絕對(duì)值是它本身;負(fù)數(shù)的絕對(duì)值是它的相反數(shù);0的絕對(duì)值是0;橄喾磾(shù)的兩個(gè)數(shù)的絕對(duì)值相等。

        6、有理數(shù)比較大。赫龜(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù);數(shù)軸上的兩個(gè)點(diǎn)所表示的數(shù),右邊的總比左邊的大;兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小。

        7、有理數(shù)的運(yùn)算:

        (1)五種運(yùn)算:加、減、乘、除、乘方

        多個(gè)數(shù)相乘,積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積的符號(hào)為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積的符號(hào)為正。只要有一個(gè)數(shù)為零,積就為零。

        有理數(shù)加法法則:

        同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加。

        異號(hào)兩數(shù)相加,絕對(duì)值值相等時(shí)和為0;絕對(duì)值不相等時(shí),取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。

        一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。

        互為相反數(shù)的兩個(gè)數(shù)相加和為0。

        有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)!

        有理數(shù)乘法法則:

        兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘。

        任何數(shù)與0相乘,積仍為0。

        有理數(shù)除法法則:

        兩個(gè)有理數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除。

        0除以任何非0的數(shù)都得0。

        注意:0不能作除數(shù)。

        有理數(shù)的乘方:求n個(gè)相同因數(shù)a的積的運(yùn)算叫做乘方。

        正數(shù)的任何次冪都是正數(shù),負(fù)數(shù)的偶次冪是正數(shù),負(fù)數(shù)的奇次冪是負(fù)數(shù)。

        (2)有理數(shù)的運(yùn)算順序

        先算乘方,再算乘除,最后算加減,如果有括號(hào),先算括號(hào)里面的。

        (3)運(yùn)算律

        加法交換律 加法結(jié)合律

        乘法交換律 乘法結(jié)合律

        乘法對(duì)加法的分配律

        8、科學(xué)記數(shù)法

        一般地,一個(gè)大于10的數(shù)可以表示成的形式,其中,n是正整數(shù),這種記數(shù)方法叫做科學(xué)記數(shù)法。(n=整數(shù)位數(shù)-1)

        第三章 整式及其加減

        1、代數(shù)式

        用運(yùn)算符號(hào)(加、減、乘、除、乘方、開方等)把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是代數(shù)式。

        注意:①代數(shù)式中除了含有數(shù)、字母和運(yùn)算符號(hào)外,還可以有括號(hào);

       、诖鷶(shù)式中不含有“=、>、<、≠”等符號(hào)。等式和不等式都不是代數(shù)式,但等號(hào)和不等號(hào)兩邊的式子一般都是代數(shù)式;

       、鄞鷶(shù)式中的字母所表示的數(shù)必須要使這個(gè)代數(shù)式有意義,是實(shí)際問題的要符合實(shí)際問題的意義。

        ※代數(shù)式的書寫格式:

       、俅鷶(shù)式中出現(xiàn)乘號(hào),通常省略不寫,如vt;

        ②數(shù)字與字母相乘時(shí),數(shù)字應(yīng)寫在字母前面,如4a;

       、蹘Х?jǐn)?shù)與字母相乘時(shí),應(yīng)先把帶分?jǐn)?shù)化成假分?jǐn)?shù),如應(yīng)寫作;

       、軘(shù)字與數(shù)字相乘,一般仍用“×”號(hào),即“×”號(hào)不省略;

        ⑤在代數(shù)式中出現(xiàn)除法運(yùn)算時(shí),一般寫成分?jǐn)?shù)的形式,如4÷(a-4)應(yīng)寫作;注意:分?jǐn)?shù)線具有“÷”號(hào)和括號(hào)的雙重作用。

        ⑥在表示和(或)差的代數(shù)式后有單位名稱的,則必須把代數(shù)式括起來,再將單位名稱寫在式子的后面,如平方米。

        2、整式:單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式。

       、賳雾(xiàng)式:都是數(shù)字和字母乘積的形式的代數(shù)式叫做單項(xiàng)式。單項(xiàng)式中,所有字母的指數(shù)之和叫做這個(gè)單項(xiàng)式的次數(shù);數(shù)字因數(shù)叫做這個(gè)單項(xiàng)式的系數(shù)。

       、诙囗(xiàng)式:幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。多項(xiàng)式中,每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng);次數(shù)最高的項(xiàng)的次數(shù)叫做多項(xiàng)式的次數(shù)。

        3、同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)叫做同類項(xiàng)。

        注意:

       、偻愴(xiàng)有兩個(gè)條件:a.所含字母相同;b.相同字母的指數(shù)也相同。

       、谕愴(xiàng)與系數(shù)無關(guān),與字母的排列順序無關(guān);

       、蹘讉(gè)常數(shù)項(xiàng)也是同類項(xiàng)。

        4、合并同類項(xiàng)法則:把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。

        5、去括號(hào)法則

        ①根據(jù)去括號(hào)法則去括號(hào):

        括號(hào)前面是“+”號(hào),把括號(hào)和它前面的“+”號(hào)去掉,括號(hào)里各項(xiàng)都不改變符號(hào);括號(hào)前面是“-”號(hào),把括號(hào)和它前面的“-”號(hào)去掉,括號(hào)里各項(xiàng)都改變符號(hào)。

       、诟鶕(jù)分配律去括號(hào):

        括號(hào)前面是“+”號(hào)看成+1,括號(hào)前面是“-”號(hào)看成-1,根據(jù)乘法的分配律用+1或-1去乘括號(hào)里的每一項(xiàng)以達(dá)到去括號(hào)的目的。

        6、添括號(hào)法則

        添“+”號(hào)和括號(hào),添到括號(hào)里的各項(xiàng)符號(hào)都不改變;添“-”號(hào)和括號(hào),添到括號(hào)里的各項(xiàng)符號(hào)都要改變。

        7、整式的運(yùn)算:

        整式的加減法:(1)去括號(hào);(2)合并同類項(xiàng)。

        第四章 基本平面圖形

        2、直線的性質(zhì)

        (1)直線公理:經(jīng)過兩個(gè)點(diǎn)有且只有一條直線。(兩點(diǎn)確定一條直線。)

        (2)過一點(diǎn)的直線有無數(shù)條。

        (3)直線是是向兩方面無限延伸的,無端點(diǎn),不可度量,不能比較大小。

        3、線段的性質(zhì)

        (1)線段公理:兩點(diǎn)之間的所有連線中,線段最短。(兩點(diǎn)之間線段最短。)

        (2)兩點(diǎn)之間的距離:兩點(diǎn)之間線段的長度,叫做這兩點(diǎn)之間的距離。

        (3)線段的大小關(guān)系和它們的長度的大小關(guān)系是一致的。

        4、線段的中點(diǎn):

        點(diǎn)M把線段AB分成相等的兩條相等的線段AM與BM,點(diǎn)M叫做線段AB的中點(diǎn)。AM = BM =1/2AB (或AB=2AM=2BM)。

        5、角:

        有公共端點(diǎn)的兩條射線組成的圖形叫做角,兩條射線的公共端點(diǎn)叫做這個(gè)角的頂點(diǎn),這兩條射線叫做這個(gè)角的邊;颍航且部梢钥闯墒且粭l射線繞著它的端點(diǎn)旋轉(zhuǎn)而成的。

        6、角的表示

        角的表示方法有以下四種:

       、儆脭(shù)字表示單獨(dú)的角,如∠1,∠2,∠3等。

       、谟眯懙南ED字母表示單獨(dú)的一個(gè)角,如∠α,∠β,∠γ,∠θ等。

        ③用一個(gè)大寫英文字母表示一個(gè)獨(dú)立(在一個(gè)頂點(diǎn)處只有一個(gè)角)的角,如∠B,∠C等。

       、苡萌齻(gè)大寫英文字母表示任一個(gè)角,如∠BAD,∠BAE,∠CAE等。

        注意:用三個(gè)大寫字母表示角時(shí),一定要把頂點(diǎn)字母寫在中間,邊上的字母寫在兩側(cè)。

        7、角的度量

        角的度量有如下規(guī)定:把一個(gè)平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。

        把1°的角60等分,每一份叫做1分的角,1分記作“1’”。

        把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。

        1°=60’,1’=60”

        8、角的平分線

        從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。

        9、角的性質(zhì)

        (1)角的大小與邊的長短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。

        (2)角的大小可以度量,可以比較,角可以參與運(yùn)算。

        10、平角和周角:一條射線繞著它的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所形成的角叫做平角。終邊繼續(xù)旋轉(zhuǎn),當(dāng)它又和始邊重合時(shí),所形成的角叫做周角。

        11、多邊形:由若干條不在同一條直線上的線段首尾順次相連組成的封閉平面圖形叫做多邊形。連接不相鄰兩個(gè)頂點(diǎn)的線段叫做多邊形的對(duì)角線。

        從一個(gè)n邊形的同一個(gè)頂點(diǎn)出發(fā),分別連接這個(gè)頂點(diǎn)與其余各頂點(diǎn),可以畫(n-3)條對(duì)角線,把這個(gè)n邊形分割成(n-2)個(gè)三角形。

        12、圓:平面上,一條線段繞著一個(gè)端點(diǎn)旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)形成的圖形叫做圓。固定的端點(diǎn)O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。

        圓上任意兩點(diǎn)A、B間的部分叫做圓弧,簡稱弧,讀作“圓弧AB”或“弧AB”;由一條弧AB和經(jīng)過這條弧的端點(diǎn)的兩條半徑OA、OB所組成的圖形叫做扇形。頂點(diǎn)在圓心的角叫做圓心角。

        第五章 一元一次方程

        1、方程

        含有未知數(shù)的等式叫做方程。

        2、方程的解

        能使方程左右兩邊相等的未知數(shù)的值叫做方程的解。

        3、等式的性質(zhì)

        (1)等式的兩邊同時(shí)加上(或減去)同一個(gè)代數(shù)式,所得結(jié)果仍是等式。

        (2)等式的兩邊同時(shí)乘以同一個(gè)數(shù)((或除以同一個(gè)不為0的數(shù)),所得結(jié)果仍是等式。

        4、一元一次方程

        只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫做一元一次方程。

        5、移項(xiàng):把方程中的某一項(xiàng),改變符號(hào)后,從方程的一邊移到另一邊,這種變形叫做移項(xiàng).

        6、解一元一次方程的一般步驟:

        (1)去分母

        (2)去括號(hào)

        (3)移項(xiàng)(把方程中的某一項(xiàng)改變符號(hào)后,從方程的一邊移到另一邊,這種變形叫移項(xiàng)。)

        (4)合并同類項(xiàng)

        (5)將未知數(shù)的系數(shù)化為1

        第六章 數(shù)據(jù)的收集與整理

        1、普查與抽樣調(diào)查

        為了特定目的對(duì)全部考察對(duì)象進(jìn)行的全面調(diào)查,叫做普查。其中被考察對(duì)象的全體叫做總體,組成總體的每一個(gè)被考察對(duì)象稱為個(gè)體。

        從總體中抽取部分個(gè)體進(jìn)行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體抽取的一部分個(gè)體叫做總體的一個(gè)樣本。

        2、扇形統(tǒng)計(jì)圖

        扇形統(tǒng)計(jì)圖:利用圓與扇形來表示總體與部分的關(guān)系,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計(jì)圖叫做扇形統(tǒng)計(jì)圖。(各個(gè)扇形所占的百分比之和為1)

        圓心角度數(shù)=360°×該項(xiàng)所占的百分比。(各個(gè)部分的圓心角度數(shù)之和為360°)

        3、頻數(shù)直方圖

        頻數(shù)直方圖是一種特殊的條形統(tǒng)計(jì)圖,它將統(tǒng)計(jì)對(duì)象的數(shù)據(jù)進(jìn)行了分組畫在橫軸上,縱軸表示各組數(shù)據(jù)的頻數(shù)。

        4、各種統(tǒng)計(jì)圖的特點(diǎn)

        條形統(tǒng)計(jì)圖:能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目。

        折線統(tǒng)計(jì)圖:能清楚地反映事物的變化情況。

        扇形統(tǒng)計(jì)圖:能清楚地表示出各部分在總體中所占的百分比。

        四邊形的知識(shí)點(diǎn)

        一、特殊的平行四邊形:

        1.矩形:

       。1)定義:有一個(gè)角是直角的平行四邊形。

       。2)性質(zhì):矩形的四個(gè)角都是直角;矩形的對(duì)角線平分且相等。

       。3)判定定理:

       、儆幸粋(gè)角是直角的平行四邊形叫做矩形。

       、趯(duì)角線相等的平行四邊形是矩形。

       、塾腥齻(gè)角是直角的四邊形是矩形。

        直角三角形的性質(zhì):直角三角形中所對(duì)的直角邊等于斜邊的一半。

        2.菱形:

        (1)定義:鄰邊相等的平行四邊形。

        (2)性質(zhì):菱形的四條邊都相等;菱形的兩條對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。

       。3)判定定理:

       、僖唤M鄰邊相等的平行四邊形是菱形。

        ②對(duì)角線互相垂直的平行四邊形是菱形。

       、鬯臈l邊相等的四邊形是菱形。

       。4)面積:

        3.正方形:

        (1)定義:一個(gè)角是直角的菱形或鄰邊相等的矩形。

       。2)性質(zhì):四條邊都相等,四個(gè)角都是直角,對(duì)角線互相垂直平分。正方形既是矩形,又是菱形。

       。3)正方形判定定理:

       、賹(duì)角線互相垂直平分且相等的四邊形是正方形;

       、谝唤M鄰邊相等,一個(gè)角為直角的平行四邊形是正方形;

       、蹖(duì)角線互相垂直的矩形是正方形;

        ④鄰邊相等的矩形是正方形

       、萦幸粋(gè)角是直角的菱形是正方形;

       、迣(duì)角線相等的菱形是正方形。

        二、矩形、菱形、正方形與平行四邊形、四邊形之間的聯(lián)系:

        1.矩形、菱形和正方形都是特殊的平行四邊形,其性質(zhì)都是在平行四邊形的基礎(chǔ)上擴(kuò)充來的。矩形是由平行四邊形增加“一個(gè)角為90°”的條件得到的,它在角和對(duì)角線方面具有比平行四邊形更多的特性;菱形是由平行四邊形增加“一組鄰邊相等”的條件得到的,它在邊和對(duì)角線方面具有比平行四邊形更多的特性;正方形是由平行四邊形增加“一組鄰邊相等”和“一個(gè)角為90°”兩個(gè)條件得到的,它在邊、角和對(duì)角線方面都具有比平行四邊形更多的特性。

        2.矩形、菱形的判定可以根據(jù)出發(fā)點(diǎn)不同而分成兩類:一類是以四邊形為出發(fā)點(diǎn)進(jìn)行判定,另一類是以平行四邊形為出發(fā)點(diǎn)進(jìn)行判定。而正方形除了上述兩個(gè)出發(fā)點(diǎn)外,還可以從矩形和菱形出發(fā)進(jìn)行判定。

        三、判定一個(gè)四邊形是特殊四邊形的步驟:

        常見考法

       。1)利用菱形、矩形、正方形的性質(zhì)進(jìn)行邊、角以及面積等計(jì)算;

       。2)靈活運(yùn)用判定定理證明一個(gè)四邊形(或平行四邊形)是菱形、矩形、正方形;

       。3)一些折疊問題;

       。4)矩形與直角三角形和等腰三角形有著密切聯(lián)系、正方形與等腰直角三角形也有著密切聯(lián)系。所以,以此為背景可以設(shè)置許多考題。

        誤區(qū)提醒

        (1)平行四邊形的所有性質(zhì)矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性質(zhì)平行四邊形不一定具有,這點(diǎn)易出現(xiàn)混淆;

       。2)矩形、菱形具有的性質(zhì)正方形都具有,而正方形具有的性質(zhì),矩形不一定具有,菱形也不一定具有,這點(diǎn)也易出現(xiàn)混淆;

       。3)不能正確的理解和運(yùn)用判定定理進(jìn)行證明,(如在證明菱形時(shí),把四條邊相等的四邊形是菱形誤解成兩組鄰邊相等的四邊形是菱形);

       。4)再利用對(duì)角線長度求菱形的面積時(shí),忘記乘;

        (5)判定一個(gè)四邊形是特殊的平行四邊形的條件不充分。

        有兩條邊相等的三角形叫等腰三角形

        相等的兩條邊叫腰;兩腰的夾角叫頂角;頂角所對(duì)的邊叫底;腰與底的夾角叫底角。

        等腰三角形性質(zhì)

        (1)具有一般三角形的邊角關(guān)系

        (2)等邊對(duì)等角;

        (3)底邊上的高、底邊上的中線、頂角平分線互相重合;

        (4)是軸對(duì)稱圖形,對(duì)稱軸是頂角平分線;

        (5)底邊小于腰長的兩倍并且大于零,腰長大于底邊的一半;

        (6)頂角等于180減去底角的兩倍;

        (7)頂角可以是銳角、直角、鈍角而底角只能是銳角

        等腰三角形分類:可分為腰和底邊不等的等腰三角形及等邊三角形

        等邊三角形性質(zhì)

        ①具備等腰三角形的一切性質(zhì)。

        ②等邊三角形三條邊都相等,三個(gè)內(nèi)角都相等并且每個(gè)都是60。

        等腰三角形的判定

       、倮枚x;②等角對(duì)等邊;

        等邊三角形的判定

        ①利用定義:三邊相等的三角形是等邊三角形

       、谟幸粋(gè)角是60的等腰三角形是等邊三角形.

        含30銳角的直角三角形邊角關(guān)系:在直角三角形中,30銳角所對(duì)的直角邊等于斜邊的一半。

        三角形邊角的不等關(guān)系;長邊對(duì)大角,短邊對(duì)小角;大角對(duì)長邊,小角對(duì)短邊。

        初中數(shù)學(xué)關(guān)于重心的知識(shí)點(diǎn)

        1、重心的定義:

        平面圖形中,幾何圖形的重心是當(dāng)支撐或懸掛時(shí)圖形能在水平面處于平衡狀態(tài),此時(shí)的支撐點(diǎn)或者懸掛點(diǎn)叫做平衡點(diǎn),也叫做重心。

        2、幾種幾何圖形的重心:

       、啪段的重心就是線段的中點(diǎn);

       、破叫兴倪呅渭疤厥馄叫兴倪呅蔚闹匦氖撬膬蓷l對(duì)角線的交點(diǎn);

       、侨切蔚娜龡l中線交于一點(diǎn),這一點(diǎn)就是三角形的重心;

       、热我舛噙呅味加兄匦,以多邊形的任意兩個(gè)頂點(diǎn)作為懸掛點(diǎn),把多邊形懸掛時(shí),過這兩點(diǎn)鉛垂線的交點(diǎn)就是這個(gè)多邊形的重心。

        提示:⑴無論幾何圖形的形狀如何,重心都有且只有一個(gè);

       、茝奈锢韺W(xué)角度看,幾何圖形在懸掛或支撐時(shí),位于重心兩邊的力矩相同。

        3、常見圖形重心的性質(zhì):

       、啪段的重心把線段分為兩等份;

        ⑵平行四邊形的重心把對(duì)角線分為兩等份;

        ⑶三角形的重心把中線分為1:2兩部分(重心到頂點(diǎn)距離占2份,重心到對(duì)邊中點(diǎn)距離占1份)。

        上面對(duì)重心知識(shí)點(diǎn)的鞏固學(xué)習(xí),同學(xué)們都能熟練的掌握了吧,希望同學(xué)們很好的復(fù)習(xí)學(xué)習(xí)數(shù)學(xué)知識(shí)。

        ①直線和圓無公共點(diǎn),稱相離。 AB與圓O相離,d>r。

       、谥本和圓有兩個(gè)公共點(diǎn),稱相交,這條直線叫做圓的割線。AB與⊙O相交,d

       、壑本和圓有且只有一公共點(diǎn),稱相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。AB與⊙O相切,d=r。(d為圓心到直線的距離)

        平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:

        1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的方程

        如果b^2-4ac>0,則圓與直線有2交點(diǎn),即圓與直線相交。

        如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切。

        如果b^2-4ac<0,則圓與直線有0交點(diǎn),即圓與直線相離。

        2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時(shí)的兩個(gè)x值x1、x2,并且規(guī)定x1

        當(dāng)x=-C/Ax2時(shí),直線與圓相離;

        初中數(shù)學(xué)的知識(shí)點(diǎn)

        一、數(shù)與代數(shù)

        1.有理數(shù)

        有理數(shù):包括正整數(shù)、0和負(fù)整數(shù)。

        數(shù)軸:包括原點(diǎn)、正方向和單位長度。

        相反數(shù):只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù)。

        絕對(duì)值:正數(shù)的絕對(duì)值是其本身,負(fù)數(shù)的絕對(duì)值是它的相反數(shù),0的絕對(duì)值是0。

        2.整式與分式

        整式:包括單項(xiàng)式和多項(xiàng)式。

        分式:包括一般形式和特殊形式。

        代數(shù)式:包括單字母、單項(xiàng)式和多項(xiàng)式。

        二、空間與圖形

        1.點(diǎn)、線、面

        點(diǎn):沒有大小,沒有長度。

        線:沒有寬度,只有長度。

        面:有長度和寬度,沒有高度。

        2.基本圖形

        直線:包括直線、射線、線段。

        角:包括平角、周角和一般的角。

        三角形:包括等邊三角形、等腰三角形和一般三角形。

        四邊形:包括矩形、正方形、梯形和平行四邊形。

        圓:包括圓的性質(zhì)和圓的定理。

        三、統(tǒng)計(jì)與概率

        1.統(tǒng)計(jì)

        統(tǒng)計(jì)圖:包括扇形統(tǒng)計(jì)圖、折線統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖。

        統(tǒng)計(jì)表:包括簡單統(tǒng)計(jì)表和復(fù)合統(tǒng)計(jì)表。

        數(shù)據(jù)的收集與整理:包括抽樣調(diào)查、全面調(diào)查和自主調(diào)查。

        2.概率

        隨機(jī)事件:包括必然事件、不可能事件和隨機(jī)事件。

        概率:包括計(jì)算事件發(fā)生的概率和隨機(jī)事件的概率。

      【初中數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

      初中數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)09-19

      初中數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)03-11

      初中數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)06-07

      數(shù)學(xué)初中知識(shí)點(diǎn)總結(jié)01-15

      初中數(shù)學(xué)幾何知識(shí)點(diǎn)總結(jié)03-01

      初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)06-24

      初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-30

      初中數(shù)學(xué)必學(xué)的知識(shí)點(diǎn)總結(jié)01-14

      初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)04-08