在线视频国产欧美另类,偷拍亚洲一区一区二区三区,日韩中文字幕在线视频,日本精品久久久久中文字幕

<small id="qpqhz"></small>
  • <legend id="qpqhz"></legend>

      <td id="qpqhz"><strong id="qpqhz"></strong></td>
      <small id="qpqhz"><menuitem id="qpqhz"></menuitem></small>
    1. 數(shù)列專題及知識(shí)點(diǎn)總結(jié)

      時(shí)間:2021-07-11 11:56:20 總結(jié) 我要投稿
      • 相關(guān)推薦

      數(shù)列專題及知識(shí)點(diǎn)總結(jié)

        數(shù)列專題及知識(shí)點(diǎn)都有一些什么基本公式,對(duì)于學(xué)習(xí)數(shù)列專題要撐握什么呢,以下大家先學(xué)習(xí)一下先吧。

      數(shù)列專題及知識(shí)點(diǎn)總結(jié)

        數(shù)列專題及知識(shí)點(diǎn)總結(jié)

        一、高考數(shù)列基本公式:

        1、一般數(shù)列的通項(xiàng)an與前n項(xiàng)和Sn的關(guān)系:an=

        2、等差數(shù)列的通項(xiàng)公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項(xiàng)、ak為已知的第k項(xiàng)) 當(dāng)d≠0時(shí),an是關(guān)于n的一次式;當(dāng)d=0時(shí),an是一個(gè)常數(shù)。

        3、等差數(shù)列的前n項(xiàng)和公式:

        當(dāng)d≠0時(shí),Sn是關(guān)于n的二次式且常數(shù)項(xiàng)為0;當(dāng)d=0時(shí)(a1≠0),Sn=na1是關(guān)于n的正比例式。

        4、等比數(shù)列的通項(xiàng)公式: an= a1qn-1an= akqn-k

        (其中a1為首項(xiàng)、ak為已知的第k項(xiàng),an≠0)

        5、等比數(shù)列的前n項(xiàng)和公式:當(dāng)q=1時(shí),Sn=n a1 (是關(guān)于n的正比例式);

        當(dāng)q≠1時(shí),

        二、高考數(shù)學(xué)中有關(guān)等差、等比數(shù)列的結(jié)論

        1、等差數(shù)列{an}的任意連續(xù)m項(xiàng)的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等差數(shù)列。

        4、等比數(shù)列{an}的任意連續(xù)m項(xiàng)的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等比數(shù)列。

        5、兩個(gè)等差數(shù)列{an}與{bn}的和差的數(shù)列{an+bn}、{an-bn}仍為等差數(shù)列。

        6、兩個(gè)等比數(shù)列{an}與{bn}的積、商、倒數(shù)組成的數(shù)列

        7、等差數(shù)列{an}的任意等距離的項(xiàng)構(gòu)成的數(shù)列仍為等差數(shù)列。

        8、等比數(shù)列{an}的任意等距離的項(xiàng)構(gòu)成的數(shù)列仍為等比數(shù)列。

        9、三個(gè)數(shù)成等差數(shù)列的設(shè)法:a-d,a,a+d;四個(gè)數(shù)成等差的設(shè)法:a-3d,a-d,,a+d,a+3d

        10、三個(gè)數(shù)成等比數(shù)列的設(shè)法:a/q,a,aq;

        三個(gè)數(shù)成等比的錯(cuò)誤設(shè)法:a/q3,a/q,aq,aq3 (為什么?)

        12、{bn}(bn>0)是等比數(shù)列,則{logcbn} (c>0且c≠1) 是等差數(shù)列。

        高中數(shù)學(xué)數(shù)列知識(shí)點(diǎn)總結(jié)四:求數(shù)列通項(xiàng)公式常用以下幾種方法:

        一、題目已知或通過簡(jiǎn)單推理判斷出是等比數(shù)列或等差數(shù)列,直接用其通項(xiàng)公式。

        例:在數(shù)列{an}中,若a1=1,an+1=an+2(n1),求該數(shù)列的通項(xiàng)公式an。

        解:由an+1=an+2(n1)及已知可推出數(shù)列{an}為a1=1,d=2的等差數(shù)列。所以an=2n-1。此類題主要是用等比、等差數(shù)列的定義判斷,是較簡(jiǎn)單的基礎(chǔ)小題。

        二、已知數(shù)列的前n項(xiàng)和,用公式

        S1 (n=1)

        Sn-Sn-1 (n2)

        例:已知數(shù)列{an}的前n項(xiàng)和Sn=n2-9n,第k項(xiàng)滿足5

        (A) 9 (B) 8 (C) 7 (D) 6

        解:∵an=Sn-Sn-1=2n-10,∴5<2k-10<8 ∴k=8 選 (B)

        此類題在解時(shí)要注意考慮n=1的情況。

        三、已知an與Sn的關(guān)系時(shí),通常用轉(zhuǎn)化的方法,先求出Sn與n的關(guān)系,再由上面的(二)方法求通項(xiàng)公式。

        例:已知數(shù)列{an}的前n項(xiàng)和Sn滿足an=SnSn-1(n2),且a1=-,求數(shù)列{an}的通項(xiàng)公式。

        解:∵an=SnSn-1(n2),而an=Sn-Sn-1,SnSn-1=Sn-Sn-1,兩邊同除以SnSn-1,得---=-1(n2),而-=-=-,∴{-} 是以-為首項(xiàng),-1為公差的等差數(shù)列,∴-= -,Sn= -,

        再用(二)的'方法:當(dāng)n2時(shí),an=Sn-Sn-1=-,當(dāng)n=1時(shí)不適合此式,所以,

        - (n=1)

        - (n2)

        四、用累加、累積的方法求通項(xiàng)公式

        對(duì)于題中給出an與an+1、an-1的遞推式子,常用累加、累積的方法求通項(xiàng)公式。

        例:設(shè)數(shù)列{an}是首項(xiàng)為1的正項(xiàng)數(shù)列,且滿足(n+1)an+12-nan2+an+1an=0,求數(shù)列{an}的通項(xiàng)公式

        解:∵(n+1)an+12-nan2+an+1an=0,可分解為[(n+1)an+1-nan](an+1+an)=0

        又∵{an}是首項(xiàng)為1的正項(xiàng)數(shù)列,∴an+1+an ≠0,∴-=-,由此得出:-=-,-=-,-=-,…,-=-,這n-1個(gè)式子,將其相乘得:∴ -=-,

        又∵a1=1,∴an=-(n2),∵n=1也成立,∴an=-(n∈N*)

        五、用構(gòu)造數(shù)列方法求通項(xiàng)公式

        題目中若給出的是遞推關(guān)系式,而用累加、累積、迭代等又不易求通項(xiàng)公式時(shí),可以考慮通過變形,構(gòu)造出含有 an(或Sn)的式子,使其成為等比或等差數(shù)列,從而求出an(或Sn)與n的關(guān)系,這是近一、二年來的高考熱點(diǎn),因此既是重點(diǎn)也是難點(diǎn)。

        例:已知數(shù)列{an}中,a1=2,an+1=(--1)(an+2),n=1,2,3,……

        (1)求{an}通項(xiàng)公式 (2)略

        解:由an+1=(--1)(an+2)得到an+1--= (--1)(an--)

        ∴{an--}是首項(xiàng)為a1--,公比為--1的等比數(shù)列。

        由a1=2得an--=(--1)n-1(2--) ,于是an=(--1)n-1(2--)+-

        又例:在數(shù)列{an}中,a1=2,an+1=4an-3n+1(n∈N*),證明數(shù)列{an-n}是等比數(shù)列。

        證明:本題即證an+1-(n+1)=q(an-n) (q為非0常數(shù))

        由an+1=4an-3n+1,可變形為an+1-(n+1)=4(an-n),又∵a1-1=1,

        所以數(shù)列{an-n}是首項(xiàng)為1,公比為4的等比數(shù)列。

        若將此問改為求an的通項(xiàng)公式,則仍可以通過求出{an-n}的通項(xiàng)公式,再轉(zhuǎn)化到an的通項(xiàng)公式上來。

        又例:設(shè)數(shù)列{an}的首項(xiàng)a1∈(0,1),an=-,n=2,3,4……(1)求{an}通項(xiàng)公式。(2)略

        解:由an=-,n=2,3,4,……,整理為1-an=--(1-an-1),又1-a1≠0,所以{1-an}是首項(xiàng)為1-a1,公比為--的等比數(shù)列,得an=1-(1-a1)(--)n-1

      【數(shù)列專題及知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

      數(shù)列的知識(shí)點(diǎn)總結(jié)03-29

      高考數(shù)列知識(shí)點(diǎn)總結(jié)03-31

      高中數(shù)列知識(shí)點(diǎn)總結(jié)12-02

      高二數(shù)學(xué)的數(shù)列知識(shí)點(diǎn)總結(jié)12-02

      等比數(shù)列知識(shí)點(diǎn)總結(jié)01-12

      關(guān)于高一數(shù)列知識(shí)點(diǎn)總結(jié)12-03

      高中數(shù)學(xué)數(shù)列知識(shí)點(diǎn)總結(jié)04-24

      必修五數(shù)學(xué)等差數(shù)列知識(shí)點(diǎn)總結(jié)02-18

      高中數(shù)學(xué)等比數(shù)列知識(shí)點(diǎn)總結(jié)02-11