在线视频国产欧美另类,偷拍亚洲一区一区二区三区,日韩中文字幕在线视频,日本精品久久久久中文字幕

<small id="qpqhz"></small>
  • <legend id="qpqhz"></legend>

      <td id="qpqhz"><strong id="qpqhz"></strong></td>
      <small id="qpqhz"><menuitem id="qpqhz"></menuitem></small>
    1. 高中數(shù)學必修二知識點總結(jié)

      時間:2025-04-19 06:56:48 知識點總結(jié) 我要投稿

      高中數(shù)學必修二知識點必備總結(jié)

        總結(jié)就是把一個時間段取得的成績、存在的問題及得到的經(jīng)驗和教訓進行一次全面系統(tǒng)的總結(jié)的書面材料,它可以使我們更有效率,因此,讓我們寫一份總結(jié)吧。那么總結(jié)有什么格式呢?下面是小編收集整理的高中數(shù)學必修二知識點必備總結(jié),歡迎大家借鑒與參考,希望對大家有所幫助。

      高中數(shù)學必修二知識點必備總結(jié)

        一、直線與方程

        (1)直線的傾斜角

        定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

        (2)直線的斜率

        ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

       、谶^兩點的直線的斜率公式:

        注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

        (2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

        (4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

        (3)直線方程

       、冱c斜式:直線斜率k,且過點

        注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。

        當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1。

       、谛苯厥剑海本斜率為k,直線在y軸上的截距為b

        ③兩點式:()直線兩點,④截矩式:

        其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為。

       、菀话闶剑(A,B不全為0)

        注意:各式的適用范圍特殊的方程如:

        平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

        (5)直線系方程:即具有某一共同性質(zhì)的直線

        (一)平行直線系

        平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

        (二)垂直直線系

        垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

        (三)過定點的直線系

        (ⅰ)斜率為k的直線系:,直線過定點;

        (ⅱ)過兩條直線,的交點的直線系方程為

        (為參數(shù)),其中直線不在直線系中。

        (6)兩直線平行與垂直

        當,時,;

        注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。

        (7)兩條直線的交點

        相交

        交點坐標即方程組的一組解。

        方程組無解;方程組有無數(shù)解與重合

        (8)兩點間距離公式:設(shè)是平面直角坐標系中的兩個點,則

        (9)點到直線距離公式:一點到直線的距離

        (10)兩平行直線距離公式

        在任一直線上任取一點,再轉(zhuǎn)化為點到直線的距離進行求解。

        二、圓的方程

        1、圓的定義:平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。

        2、圓的方程

        (1)標準方程,圓心,半徑為r;

        (2)一般方程

        當時,方程表示圓,此時圓心為,半徑為

        當時,表示一個點;當時,方程不表示任何圖形。

        (3)求圓方程的方法:

        一般都采用待定系數(shù)法:先設(shè)后求。確定一個圓需要三個獨立條件,若利用圓的標準方程,需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

        另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置。

        3、直線與圓的位置關(guān)系:

        直線與圓的位置關(guān)系有相離,相切,相交三種情況:

        (1)設(shè)直線,圓,圓心到l的距離為,則有;;

        (2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設(shè)點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程

        (3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

        4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

        設(shè)圓,兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

        當時兩圓外離,此時有公切線四條;

        當時兩圓外切,連心線過切點,有外公切線兩條,內(nèi)公切線一條;

        當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

        當時,兩圓內(nèi)切,連心線經(jīng)過切點,只有一條公切線;

        當時,兩圓內(nèi)含;當時,為同心圓。

        注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線

        圓的輔助線一般為連圓心與切線或者連圓心與弦中點

        三、立體幾何初步

        1、柱、錐、臺、球的結(jié)構(gòu)特征

        (1)棱柱:

        幾何特征:兩底面是對應邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

        (2)棱錐

        幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

        (3)棱臺:

        幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點

        (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

        幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形。

        (5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

        幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形。

        (6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

        幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形。

        (7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

        幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

        2、空間幾何體的三視圖

        定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、

        俯視圖(從上向下)

        注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度。

        3、空間幾何體的直觀圖——斜二測畫法

        斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

       、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半。

        4、柱體、錐體、臺體的表面積與體積

        (1)幾何體的表面積為幾何體各個面的面積的和。

        (2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)

        (3)柱體、錐體、臺體的體積公式

        (4)球體的表面積和體積公式:V=;S=

        4、空間點、直線、平面的位置關(guān)系

        公理1:如果一條直線的兩點在一個平面內(nèi),那么這條直線是所有的點都在這個平面內(nèi)。

        應用:判斷直線是否在平面內(nèi)

        用符號語言表示公理1:

        公理2:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線

        符號:平面α和β相交,交線是a,記作α∩β=a。

        符號語言:

        公理2的作用:

       、偎桥卸▋蓚平面相交的方法。

       、谒f明兩個平面的交線與兩個平面公共點之間的關(guān)系:交線.公共點。

       、鬯梢耘袛帱c在直線上,即證若干個點共線的重要依據(jù)。

        公理3:經(jīng)過不在同一條直線上的三點,有且只有一個平面。

        推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。

        公理3及其推論作用:

       、偎强臻g內(nèi)確定平面的依據(jù)

       、谒亲C明平面重合的依據(jù)

        公理4:平行于同一條直線的兩條直線互相平行

        空間直線與直線之間的位置關(guān)系

       、佼惷嬷本定義:不同在任何一個平面內(nèi)的兩條直線

        ②異面直線性質(zhì):既不平行,又不相交。

       、郛惷嬷本判定:過平面外一點與平面內(nèi)一點的直線與平面內(nèi)不過該店的直線是異面直線

        ④異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。

        求異面直線所成角步驟:

        A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。

        B、證明作出的角即為所求角

        C、利用三角形來求角

        (7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補。

        (8)空間直線與平面之間的位置關(guān)系

        直線在平面內(nèi)——有無數(shù)個公共點.

        三種位置關(guān)系的符號表示:aαa∩α=Aa‖α

        (9)平面與平面之間的位置關(guān)系:平行——沒有公共點;α‖β

        相交——有一條公共直線。α∩β=b

        5、空間中的平行問題

        (1)直線與平面平行的判定及其性質(zhì)

        線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。

        線線平行線面平行

        線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。線面平行線線平行

        (2)平面與平面平行的判定及其性質(zhì)

        兩個平面平行的判定定理

        (1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行

        (線面平行→面面平行),(2)如果在兩個平面內(nèi),各有兩組相交直線對應平行,那么這兩個平面平行。

        (線線平行→面面平行),(3)垂直于同一條直線的兩個平面平行,兩個平面平行的性質(zhì)定理

        (1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行。(面面平行→線面平行)

        (2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行。(面面平行→線線平行)

        7、空間中的垂直問題

        (1)線線、面面、線面垂直的定義

       、賰蓷l異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。

       、诰面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直。

       、燮矫婧推矫娲怪保喝绻麅蓚平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。

        (2)垂直關(guān)系的判定和性質(zhì)定理

        ①線面垂直判定定理和性質(zhì)定理

        判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面。

        性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。

       、诿婷娲怪钡呐卸ǘɡ砗托再|(zhì)定理

        判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。

        性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面。

        9、空間角問題

        (1)直線與直線所成的角

       、賰善叫兄本所成的角:規(guī)定為。

       、趦蓷l相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。

       、蹆蓷l異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。

        (2)直線和平面所成的角

       、倨矫娴钠叫芯與平面所成的角:規(guī)定為。

        ②平面的垂線與平面所成的角:規(guī)定為。

       、燮矫娴男本與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角。

        求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”。

        在“作角”時依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點到面的垂線,在解題時,注意挖掘題設(shè)中兩個主要信息:

        (1)斜線上一點到面的垂線;

        (2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。

        (3)二面角和二面角的平面角

        ①二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。

       、诙娼堑钠矫娼牵阂远娼堑睦馍先我庖稽c為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。

        ③直二面角:平面角是直角的二面角叫直二面角。

        兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

       、芮蠖娼堑姆椒

        定義法:在棱上選擇有關(guān)點,過這個點分別在兩個面內(nèi)作垂直于棱的射線得到平面角

        垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

      【高中數(shù)學必修二知識點總結(jié)】相關(guān)文章:

      高中數(shù)學必修二知識點總結(jié)06-15

      高中數(shù)學必修二知識點總結(jié)09-17

      高中數(shù)學必修二知識點總結(jié)【精選2篇】04-05

      高中數(shù)學必修2知識點總結(jié)03-01

      高中數(shù)學必修1知識點總結(jié)02-22

      高中數(shù)學必修2知識點總結(jié)11-30

      高中數(shù)學必修三知識點總結(jié)04-05

      歷史必修二知識點總結(jié)10-12

      化學必修二知識點總結(jié)(精選)09-09

      生物必修二知識點總結(jié)07-26