高中數(shù)學(xué)教案(合集15篇)
作為一無名無私奉獻(xiàn)的教育工作者,常常需要準(zhǔn)備教案,教案是實施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。那么優(yōu)秀的教案是什么樣的呢?下面是小編精心整理的高中數(shù)學(xué)教案,歡迎閱讀,希望大家能夠喜歡。
高中數(shù)學(xué)教案1
第一章:空間幾何體
1.1.1柱、錐、臺、球的結(jié)構(gòu)特征
一、教學(xué)目標(biāo)
1.知識與技能
。1)通過實物操作,增強學(xué)生的直觀感知。
。2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
。4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。
2.過程與方法
。1)讓學(xué)生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。
。2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。
3.情感態(tài)度與價值觀
。1)使學(xué)生感受空間幾何體存在于現(xiàn)實生活周圍,增強學(xué)生學(xué)習(xí)的積極性,同時提高學(xué)生的觀察能力。
。2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
二、教學(xué)重點、難點
重點:讓學(xué)生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。
難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。
三、教學(xué)用具
。1)學(xué)法:觀察、思考、交流、討論、概括。
。2)實物模型、投影儀
四、教學(xué)思路
(一)創(chuàng)設(shè)情景,揭示課題
1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動及時給予評價。
2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對這些空間物體進行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
(二)、研探新知
1.引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
2.觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點是什么?它們的共同特點是什么?
3.組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4.教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
5.提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?請列舉身邊具有已學(xué)過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?
6.以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
7.讓學(xué)生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。
8.引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導(dǎo)學(xué)生思考、討論、概括。
9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
10.現(xiàn)實世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結(jié)構(gòu)特征的物體組合而成。請列舉身邊具有已學(xué)過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?
。ㄈ┵|(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。
1.有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)
2.棱柱的何兩個平面都可以作為棱柱的底面嗎?
3.課本P8,習(xí)題1.1A組第1題。
4.圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
5.棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
四、鞏固深化
練習(xí):課本P7練習(xí)1、2(1)(2)
課本P8習(xí)題1.1第2、3、4題
五、歸納整理
由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容
六、布置作業(yè)
課本P8練習(xí)題1.1B組第1題
課外練習(xí)課本P8習(xí)題1.1B組第2題
1.2.1空間幾何體的三視圖(1課時)
一、教學(xué)目標(biāo)
1.知識與技能
。1)掌握畫三視圖的基本技能
。2)豐富學(xué)生的空間想象力
2.過程與方法
主要通過學(xué)生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態(tài)度與價值觀
(1)提高學(xué)生空間想象力
。2)體會三視圖的作用
二、教學(xué)重點、難點
重點:畫出簡單組合體的三視圖
難點:識別三視圖所表示的空間幾何體
三、學(xué)法與教學(xué)用具
1.學(xué)法:觀察、動手實踐、討論、類比
2.教學(xué)用具:實物模型、三角板
四、教學(xué)思路
。ㄒ唬﹦(chuàng)設(shè)情景,揭開課題
“橫看成嶺側(cè)看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學(xué)習(xí)空間幾何體的三視圖。
在初中,我們已經(jīng)學(xué)習(xí)了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側(cè)視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?
。ǘ⿲嵺`動手作圖
1.講臺上放球、長方體實物,要求學(xué)生畫出它們的三視圖,教師巡視,學(xué)生畫完后可交流結(jié)果并討論;
2.教師引導(dǎo)學(xué)生用類比方法畫出簡單組合體的三視圖
(1)畫出球放在長方體上的三視圖
。2)畫出礦泉水瓶(實物放在桌面上)的三視圖
學(xué)生畫完后,可把自己的作品展示并與同學(xué)交流,總結(jié)自己的作圖心得。
作三視圖之前應(yīng)當(dāng)細(xì)心觀察,認(rèn)識了它的基本結(jié)構(gòu)特征后,再動手作圖。
3.三視圖與幾何體之間的相互轉(zhuǎn)化。
。1)投影出示圖片(課本P10,圖1.2-3)
請同學(xué)們思考圖中的三視圖表示的幾何體是什么?
。2)你能畫出圓臺的三視圖嗎?
。3)三視圖對于認(rèn)識空間幾何體有何作用?你有何體會?
教師巡視指導(dǎo),解答學(xué)生在學(xué)習(xí)中遇到的困難,然后讓學(xué)生發(fā)表對上述問題的看法。
4.請同學(xué)們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學(xué)交流。
。ㄈ╈柟叹毩(xí)
課本P12練習(xí)1、2P18習(xí)題1.2A組1
。ㄋ模w納整理
請學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖
。ㄎ澹┱n外練習(xí)
1.自己動手制作一個底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫出它的三視圖。
2.自己制作一個上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的'棱臺模型,并畫出它的三視圖。
1.2.2空間幾何體的直觀圖(1課時)
一、教學(xué)目標(biāo)
1.知識與技能
。1)掌握斜二測畫法畫水平設(shè)置的平面圖形的直觀圖。
。2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點。
2.過程與方法
學(xué)生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。
3.情感態(tài)度與價值觀
。1)提高空間想象力與直觀感受。
(2)體會對比在學(xué)習(xí)中的作用。
(3)感受幾何作圖在生產(chǎn)活動中的應(yīng)用。
二、教學(xué)重點、難點
重點、難點:用斜二測畫法畫空間幾何值的直觀圖。
三、學(xué)法與教學(xué)用具
1.學(xué)法:學(xué)生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。
2.教學(xué)用具:三角板、圓規(guī)
四、教學(xué)思路
。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題
1.我們都學(xué)過畫畫,這節(jié)課我們畫一物體:圓柱
把實物圓柱放在講臺上讓學(xué)生畫。
2.學(xué)生畫完后展示自己的結(jié)果并與同學(xué)交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。
。ǘ┭刑叫轮
1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測畫法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見解,教師及時給予點評。
畫水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點的位置,因為多邊形頂點的位置一旦確定,依次連結(jié)這些頂點就可畫出多邊形來,因此平面多邊形水平放置時,直觀圖的畫法可以歸結(jié)為確定點的位置的畫法。強調(diào)斜二測畫法的步驟。
練習(xí)反饋
根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學(xué)生獨立完成后,教師檢查。
2.例2,用斜二測畫法畫水平放置的圓的直觀圖
教師引導(dǎo)學(xué)生與例1進行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構(gòu)造出一些點。
教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點,與學(xué)生共同完成例2并詳細(xì)板書畫法。
3.探求空間幾何體的直觀圖的畫法
(1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體ABCD-A’B’C’D’的直觀圖。
教師引導(dǎo)學(xué)生完成,要注意對每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫好每一步,不能敷衍了事。
。2)投影出示幾何體的三視圖、課本P15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握圖形尺寸大小之間的關(guān)系。
4.平行投影與中心投影
投影出示課本P17圖1.2-12,讓學(xué)生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。
5.鞏固練習(xí),課本P16練習(xí)1(1),2,3,4
三、歸納整理
學(xué)生回顧斜二測畫法的關(guān)鍵與步驟
四、作業(yè)
1.書畫作業(yè),課本P17練習(xí)第5題
2.課外思考課本P16,探究(1)(2)
高中數(shù)學(xué)教案2
1. 你能遵守學(xué)校的規(guī)章制度,按時上學(xué),按時完成作業(yè),書寫比較端正,課堂上你也坐得比較端正。如果在學(xué)習(xí)上能夠更加主動一些,尋找適合自己的學(xué)習(xí)
2. 你尊敬老師、團結(jié)同學(xué)、熱愛勞動、關(guān)心集體,所以大家都喜歡你。能嚴(yán)格遵守學(xué)校的各項規(guī)章制度。學(xué)習(xí)不夠刻苦,有畏難情緒。學(xué)習(xí)方法有待改進,掌握知識不夠牢固,思維能力要進一步培養(yǎng)和提高。學(xué)習(xí)成績比上學(xué)期有一定的進步。平時能積極參加體育鍛煉和有益的文娛活動。今后如果能注意分配好學(xué)習(xí)時間,各科全面發(fā)展,均衡提高,相信一定會成為一名更加出色的學(xué)生。
3. 你性格活潑開朗,總是帶著甜甜的笑容,你能與同學(xué)友愛相處,待人有禮,能虛心接受老師的教導(dǎo)。大多數(shù)的時候你都能遵守紀(jì)律,偶爾會犯一些小錯誤。有時上課不夠留心,還有些小動作,你能想辦法控制自己嗎?一開學(xué)老師就發(fā)現(xiàn)你的作業(yè)干凈又整齊,你的字清秀又漂亮。但學(xué)習(xí)成績不容樂觀,需努力提高學(xué)習(xí)成績。希望能從根本上認(rèn)識到自己的不足,在課堂上能認(rèn)真聽講,開動腦筋,遇到問題敢于請教。
4. 你熱情大方,為人豪爽,身上透露出女生少有的霸氣,作為班干部,你會提醒同學(xué)們及時安靜,對學(xué)習(xí)態(tài)度端正,及時完成作業(yè),但是少了點耐心,試著把心沉下來,上課集中注意力,跟著老師的思路走,一步一個腳印,一定能走出你自己絢麗的人生!
5. 學(xué)習(xí)態(tài)度端正,效率高,合理分配時間,學(xué)習(xí)生活兩不誤,善良熱情,熱愛生活,樂于助人,與周圍同學(xué)相處關(guān)系融洽。能嚴(yán)格遵守學(xué)校的各項規(guī)章制度。上課能專心聽講,認(rèn)真做好筆記,課后能按時完成作業(yè)。記憶力好,自學(xué)能力較強。希望你能更主動地學(xué)習(xí),多思,多問,多練,大膽向老師和同學(xué)請教,注意采用科學(xué)的學(xué)習(xí)方法,提高學(xué)習(xí)效率,一定能取得滿意的成績!
6. 作為本班的班長,你對待班級工作能夠認(rèn)真負(fù)責(zé),積極配合老師和班委工作,集體榮譽感很強,人際關(guān)系很好,待人真誠,熱心幫助人,老師十分欣賞你的善良和聰明,希望在以后能夠積極發(fā)揮自己的'所長,帶領(lǐng)全班不僅在班級管理上有進步,而且能在學(xué)習(xí)上也能成為全班的領(lǐng)頭雁,在下學(xué)期能取得更大的進步!
7. 身為班委的你,對工作認(rèn)真負(fù)責(zé),以身作則,性格和善,與同學(xué)關(guān)系融洽,積極參加各項活動,不太張揚的你顯得穩(wěn)重和踏實,在學(xué)習(xí)上,你認(rèn)真聽課,及時完成各科作業(yè),但是我總覺得你的學(xué)習(xí)還不夠主動,沒有形成自己的一套方法,若從被動的學(xué)習(xí)中解脫出來,應(yīng)該穩(wěn)定在班級前五名啊!加油!
8. 你是個懂禮貌明事理的孩子,你能嚴(yán)格遵守班級紀(jì)律,熱愛集體,對待學(xué)習(xí)態(tài)度端正,上課能夠?qū)P穆犞v,課下能夠認(rèn)真完成作業(yè)。你的學(xué)習(xí)方法有待改進,若能做到學(xué)習(xí)時心無旁騖就好了,掌握知識也不夠牢固,思維能力要進一步培養(yǎng)和提高。只要有恒心,有毅力,老師相信你會在各方面取得長足進步!
9. 你為人熱情大方,能和同學(xué)友好相處。你為人正直誠懇,尊敬老師,關(guān)心班集體,待人有禮,能認(rèn)真聽從老師的教導(dǎo),自覺遵守學(xué)校的各項規(guī)章制度,抵制各種不良思想。有集體榮譽感,樂于為集體做事。學(xué)習(xí)刻苦,成績有所提高。上課能專心聽講,思維活躍,積極回答問題,積極思考,認(rèn)真做好筆記。今后如果能注意分配好學(xué)習(xí)時間,各科全面發(fā)展,均衡提高,相信一定會成為一名更加出色的學(xué)生。
10. 記得和你說過,你是個太聰明的孩子,你反應(yīng)敏捷,活潑靈動。但是做學(xué)問是需要靜下心來老老實實去鉆研的,容不得賣弄小聰明和半點頑皮話。要知道,學(xué)如逆水行舟,不進則退;心似平原野馬,易放難收!望你下學(xué)期重新抖擻精神早日進入狀態(tài),不辜負(fù)關(guān)愛你的人對你的殷殷期盼。
高中數(shù)學(xué)教案3
1.教學(xué)目標(biāo)
(1)知識目標(biāo): 1.在平面直角坐標(biāo)系中,探索并掌握圓的標(biāo)準(zhǔn)方程;
2.會由圓的方程寫出圓的半徑和圓心,能根據(jù)條件寫出圓的方程.
(2)能力目標(biāo): 1.進一步培養(yǎng)學(xué)生用解析法研究幾何問題的能力;
2.使學(xué)生加深對數(shù)形結(jié)合思想和待定系數(shù)法的理解;
3.增強學(xué)生用數(shù)學(xué)的意識.
(3)情感目標(biāo):培養(yǎng)學(xué)生主動探究知識、合作交流的意識,在體驗數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣.
2.教學(xué)重點.難點
(1)教學(xué)重點:圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.
(2)教學(xué)難點:會根據(jù)不同的已知條件,利用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程以及選擇恰
當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實際問題.
3.教學(xué)過程
(一)創(chuàng)設(shè)情境(啟迪思維)
問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個隧道?
[引導(dǎo)] 畫圖建系
[學(xué)生活動]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進行提示性復(fù)習(xí))
解:以某一截面半圓的圓心為坐標(biāo)原點,半圓的直徑ab所在直線為x軸,建立直角坐標(biāo)系,則半圓的方程為x2 y2=16(y≥0)
將x=2.7代入,得 .
即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛?cè)脒@個隧道。
(二)深入探究(獲得新知)
問題二:1.根據(jù)問題一的探究能不能得到圓心在原點,半徑為 的圓的方程?
答:x2 y2=r2
2.如果圓心在 ,半徑為 時又如何呢?
[學(xué)生活動] 探究圓的方程。
[教師預(yù)設(shè)] 方法一:坐標(biāo)法
如圖,設(shè)m(x,y)是圓上任意一點,根據(jù)定義點m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}
由兩點間的距離公式,點m適合的條件可表示為 ①
把①式兩邊平方,得(x―a)2 (y―b)2=r2
方法二:圖形變換法
方法三:向量平移法
(三)應(yīng)用舉例(鞏固提高)
i.直接應(yīng)用(內(nèi)化新知)
問題三:1.寫出下列各圓的方程(課本p77練習(xí)1)
(1)圓心在原點,半徑為3;
(2)圓心在 ,半徑為 ;
(3)經(jīng)過點 ,圓心在點 .
2.根據(jù)圓的`方程寫出圓心和半徑
(1) ; (2) .
ii.靈活應(yīng)用(提升能力)
問題四:1.求以 為圓心,并且和直線 相切的圓的方程.
[教師引導(dǎo)]由問題三知:圓心與半徑可以確定圓.
2.已知圓的方程為 ,求過圓上一點 的切線方程.
[學(xué)生活動]探究方法
[教師預(yù)設(shè)]
方法一:待定系數(shù)法(利用幾何關(guān)系求斜率-垂直)
方法二:待定系數(shù)法(利用代數(shù)關(guān)系求斜率-聯(lián)立方程)
方法三:軌跡法(利用勾股定理列關(guān)系式) [多媒體課件演示]
方法四:軌跡法(利用向量垂直列關(guān)系式)
3.你能歸納出具有一般性的結(jié)論嗎?
已知圓的方程是 ,經(jīng)過圓上一點 的切線的方程是: .
iii.實際應(yīng)用(回歸自然)
問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時每隔4m需用一個支柱支撐,求支柱 的長度(精確到0.01m).
[多媒體課件演示創(chuàng)設(shè)實際問題情境]
(四)反饋訓(xùn)練(形成方法)
問題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.
2.已知點a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.
3.求圓x2 y2=13過點(-2,3)的切線方程.
4.已知圓的方程為 ,求過點 的切線方程.
高中數(shù)學(xué)教案4
教學(xué)目標(biāo):
1.了解復(fù)數(shù)的幾何意義,會用復(fù)平面內(nèi)的點和向量來表示復(fù)數(shù);了解復(fù)數(shù)代數(shù)形式的加、減運算的幾何意義.
2.通過建立復(fù)平面上的點與復(fù)數(shù)的一一對應(yīng)關(guān)系,自主探索復(fù)數(shù)加減法的幾何意義.
教學(xué)重點:
復(fù)數(shù)的幾何意義,復(fù)數(shù)加減法的幾何意義.
教學(xué)難點:
復(fù)數(shù)加減法的幾何意義.
教學(xué)過程:
一 、問題情境
我們知道,實數(shù)與數(shù)軸上的點是一一對應(yīng)的,實數(shù)可以用數(shù)軸上的點來表示.那么,復(fù)數(shù)是否也能用點來表示呢?
二、學(xué)生活動
問題1 任何一個復(fù)數(shù)a+bi都可以由一個有序?qū)崝?shù)對(a,b)惟一確定,而有序?qū)崝?shù)對(a,b)與平面直角坐標(biāo)系中的點是一一對應(yīng)的,那么我們怎樣用平面上的點來表示復(fù)數(shù)呢?
問題2 平面直角坐標(biāo)系中的點A與以原點O為起點,A為終點的向量是一一對應(yīng)的,那么復(fù)數(shù)能用平面向量表示嗎?
問題3 任何一個實數(shù)都有絕對值,它表示數(shù)軸上與這個實數(shù)對應(yīng)的點到原點的距離.任何一個向量都有模,它表示向量的長度,那么相應(yīng)的,我們可以給出復(fù)數(shù)的模(絕對值)的概念嗎?它又有什么幾何意義呢?
問題4 復(fù)數(shù)可以用復(fù)平面的向量來表示,那么,復(fù)數(shù)的加減法有什么幾何意義呢?它能像向量加減法一樣,用作圖的方法得到嗎?兩個復(fù)數(shù)差的模有什么幾何意義?
三、建構(gòu)數(shù)學(xué)
1.復(fù)數(shù)的幾何意義:在平面直角坐標(biāo)系中,以復(fù)數(shù)a+bi的實部a為橫坐標(biāo),虛部b為縱坐標(biāo)就確定了點Z(a,b),我們可以用點Z(a,b)來表示復(fù)數(shù)a+bi,這就是復(fù)數(shù)的幾何意義.
2.復(fù)平面:建立了直角坐標(biāo)系來表示復(fù)數(shù)的平面.其中x軸為實軸,y軸為虛軸.實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù).
3.因為復(fù)平面上的點Z(a,b)與以原點O為起點、Z為終點的向量一一對應(yīng),所以我們也可以用向量來表示復(fù)數(shù)z=a+bi,這也是復(fù)數(shù)的幾何意義.
6.復(fù)數(shù)加減法的幾何意義可由向量加減法的平行四邊形法則得到,兩個復(fù)數(shù)差的模就是復(fù)平面內(nèi)與這兩個復(fù)數(shù)對應(yīng)的兩點間的距離.同時,復(fù)數(shù)加減法的法則與平面向量加減法的坐標(biāo)形式也是完全一致的.
四、數(shù)學(xué)應(yīng)用
例1 在復(fù)平面內(nèi),分別用點和向量表示下列復(fù)數(shù)4,2+i,-i,-1+3i,3-2i.
練習(xí) 課本P123練習(xí)第3,4題(口答).
思考
1.復(fù)平面內(nèi),表示一對共軛虛數(shù)的兩個點具有怎樣的位置關(guān)系?
2.如果復(fù)平面內(nèi)表示兩個虛數(shù)的.點關(guān)于原點對稱,那么它們的實部和虛部分別滿足什么關(guān)系?
3.“a=0”是“復(fù)數(shù)a+bi(a,b∈R)是純虛數(shù)”的__________條件.
4.“a=0”是“復(fù)數(shù)a+bi(a,b∈R)所對應(yīng)的點在虛軸上”的_____條件.
例2 已知復(fù)數(shù)z=(m2+m-6)+(m2+m-2)i在復(fù)平面內(nèi)所對應(yīng)的點位于第二象限,求實數(shù)m允許的取值范圍.
例3 已知復(fù)數(shù)z1=3+4i,z2=-1+5i,試比較它們模的大小.
思考 任意兩個復(fù)數(shù)都可以比較大小嗎?
例4 設(shè)z∈C,滿足下列條件的點Z的集合是什么圖形?
(1)│z│=2;(2)2<│z│<3.
變式:課本P124習(xí)題3.3第6題.
五、要點歸納與方法小結(jié)
本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.復(fù)數(shù)的幾何意義.
2.復(fù)數(shù)加減法的幾何意義.
3.?dāng)?shù)形結(jié)合的思想方法.
高中數(shù)學(xué)教案5
教學(xué)目標(biāo):
。1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.
。2)理解直線與二元一次方程的關(guān)系及其證明
(3)培養(yǎng)學(xué)生抽象概括能力、分類討論能力、逆向思維的習(xí)慣和形成特殊與一般辯證統(tǒng)一的觀點.
教學(xué)重點、難點:直線方程的一般式.直線與二元一次方程 ( 、 不同時為0)的對應(yīng)關(guān)系及其證明.
教學(xué)用具:計算機
教學(xué)方法:啟發(fā)引導(dǎo)法,討論法
教學(xué)過程:
下面給出教學(xué)實施過程設(shè)計的簡要思路:
教學(xué)設(shè)計思路:
。ㄒ唬┮氲脑O(shè)計
前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問題:
問:說出過點 (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是 ,屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次.
肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個問題:
問:求出過點 , 的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是 (或其它形式),也屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次.
肯定學(xué)生回答后強調(diào)“也是二元一次方程,都是因為未知數(shù)有兩個,它們的最高次數(shù)為一次”.
啟發(fā):你在想什么(或你想到了什么)?誰來談?wù)?各小組可以討論討論.
學(xué)生紛紛談出自己的想法,教師邊評價邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識統(tǒng)一到如下問題:
【問題1】“任意直線的方程都是二元一次方程嗎?”
。ǘ┍竟(jié)主體內(nèi)容教學(xué)的設(shè)計
這是本節(jié)課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路.
學(xué)生或獨立研究,或合作研究,教師巡視指導(dǎo).
經(jīng)過一定時間的研究,教師組織開展集體討論.首先讓學(xué)生陳述解決思路或解決方案:
思路一:…
思路二:…
……
教師組織評價,確定最優(yōu)方案(其它待課下研究)如下:
按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.
當(dāng) 存在時,直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.
當(dāng) 不存在時,直線 的方程可表示為 形式的方程,它是二元一次方程嗎?
學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時教師引導(dǎo)學(xué)生,逐步認(rèn)識到把它看成二元一次方程的合理性:
平面直角坐標(biāo)系中直線 上點的`坐標(biāo)形式,與其它直線上點的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的.
綜合兩種情況,我們得出如下結(jié)論:
在平面直角坐標(biāo)系中,對于任何一條直線,都有一條表示這條直線的關(guān)于 、 的二元一次方程.
至此,我們的問題1就解決了.簡單點說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成 或 的形式,準(zhǔn)確地說應(yīng)該是“要么形如 這樣,要么形如 這樣的方程”.
同學(xué)們注意:這樣表達(dá)起來是不是很啰嗦,能不能有一個更好的表達(dá)?
學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式.
這樣上邊的結(jié)論可以表述如下:
在平面直角坐標(biāo)系中,對于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時為0)的二元一次方程.
啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關(guān)的問題呢?
【問題2】任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線嗎?
不難看出上邊的結(jié)論只是直線與方程相互關(guān)系的一個方面,這個問題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認(rèn)真地研究,得到明確的結(jié)論.那么如何研究呢?
師生共同討論,評價不同思路,達(dá)成共識:
回顧上邊解決問題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程 (其中 、 不同時為0)系數(shù) 是否為0恰好對應(yīng)斜率 是否存在,即
。1)當(dāng) 時,方程可化為
這是表示斜率為 、在 軸上的截距為 的直線.
。2)當(dāng) 時,由于 、 不同時為0,必有 ,方程可化為
這表示一條與 軸垂直的直線.
因此,得到結(jié)論:
在平面直角坐標(biāo)系中,任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線.
為方便,我們把 (其中 、 不同時為0)稱作直線方程的一般式是合理的.
【動畫演示】
演示“直線各參數(shù)”文件,體會任何二元一次方程都表示一條直線.
至此,我們的第二個問題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應(yīng)關(guān)系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉(zhuǎn)化關(guān)系.
。ㄈ┚毩(xí)鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計
略
高中數(shù)學(xué)教案6
一、什么是教學(xué)案例
教學(xué)案例是真實而又典型且含有問題的事件。簡單地說,一個教學(xué)案例就是一個包含有疑難問題的實際情境的描述,是一個教學(xué)實踐過程中的故事,描述的是教學(xué)過程中“意料之外,情理之中的事”。
這可以從以下幾個層次來理解:
教學(xué)案例是事件:教學(xué)案例是對教學(xué)過程中的一個實際情境的描述。它講述的是一個故事,敘述的是這個教學(xué)故事的產(chǎn)生、發(fā)展的歷程,它是對教學(xué)現(xiàn)象的動態(tài)性的把握。
教學(xué)案例是含有問題的事件:事件只是案例的基本素材,并不是所有的教學(xué)事件都可以成為案例。能夠成為案例的事件,必須包含有問題或疑難情境在內(nèi),并且也可能包含有解決問題的方法在內(nèi)。正因為這一點,案例才成為一種獨特的研究成果的表現(xiàn)形式。
案例是真實而又典型的事件:案例必須是有典型意義的,它必須能給讀者帶來一定的啟示和體會。案例與故事之間的根本區(qū)別是:故事是可以杜撰的,而案例是不能杜撰和抄襲的,它所反映的是真是發(fā)生的事件,是教學(xué)事件的真實再現(xiàn)。是對“當(dāng)前”課堂中真實發(fā)生的實踐情景的描述。它不能用“搖擺椅子上杜撰的事實來替代”,也不能從抽象的、概括化的理論中演繹的事實來替代。
二、如何進行教學(xué)案例研究
教學(xué)案例是教師教學(xué)行為真實、典型的記錄,也是教師教學(xué)理念和教學(xué)思想的真實體現(xiàn)。因此它是教育教學(xué)研究的寶貴資源,也是教師之間交流的重要媒介。進行教學(xué)案例的研究是教師不斷反思、改進自己教學(xué)的一種方法,能促使教師更為深刻地認(rèn)識到自己工作中的重點和難點。這個過程就是教師自我教育和成長的過程。
那么如何進行教學(xué)案例研究呢?一般情況下,案例研究的程序基本有以下兩個環(huán)節(jié):案例研究的準(zhǔn)備及實施、案例研究報告的撰寫與反思。
(一)案例研究的準(zhǔn)備與實施
1.研究主題的選擇
案例研究都要有研究的重點和主題,這個主題常與教學(xué)改革的核心理念、常見的疑難問題和困惑事件相關(guān),一般來說可以從教學(xué)的各個方面確定研究的主題,如從教師教學(xué)行為確定主題——教學(xué)材料的選擇、教學(xué)中的提問、教學(xué)媒體的使用、教學(xué)評價語言、課堂教學(xué)調(diào)控行為等;也可以從學(xué)生的學(xué)習(xí)方式確定主題——探究性學(xué)習(xí)、問題解決學(xué)習(xí)、合作學(xué)習(xí)、實踐性活動等。另外從學(xué)科特點、教學(xué)內(nèi)容等都可以確定研究的主題。
研究者要了解當(dāng)前教學(xué)的大背景,教改的大方向,要熟悉相關(guān)的《課程標(biāo)準(zhǔn)》和有針對性地作一些理論準(zhǔn)備。還要通過有關(guān)的調(diào)查,搜集詳盡的材料(如閱讀教師的教學(xué)設(shè)計,進行訪談等),同時初步確定案例研究的方向、研究任務(wù),即初步確定案例的內(nèi)容是關(guān)于教學(xué)策略、學(xué)生行為或是教學(xué)技能的研究。
一般來說,案例研究主題的確定往往需要思考下面一些問題:即研究的事件是否對于自我發(fā)現(xiàn)更有潛力?選擇的事件對學(xué)生是否有較大的情感影響(心靈是否受到震撼)?關(guān)鍵事件再現(xiàn)了前人(或自己)過去成功的行為嗎?事件呈現(xiàn)的是一個你不能確定怎樣解決的問題?事件需要你做出困難的選擇嗎?事件使得你必須以一種感覺不熟悉的方式或是仍在思考的方式回答嗎?事件暗示一個與道德或道義上相關(guān)的問題嗎?研究的主題如果反映以上的一些內(nèi)容,那么這樣的案例研究在自我學(xué)習(xí)、內(nèi)省和深層次理解方面就可能更加富有成效。
高中數(shù)學(xué)教學(xué)案例研究的主題內(nèi)容主要集中在三方面:(1)學(xué)科特點的體現(xiàn):如數(shù)學(xué)思想方法的教學(xué)、數(shù)學(xué)思維品質(zhì)的培養(yǎng)、本質(zhì)屬性的抽象、數(shù)學(xué)結(jié)論的推廣等;(2)學(xué)生數(shù)學(xué)學(xué)習(xí)規(guī)律的探究:如數(shù)學(xué)學(xué)習(xí)習(xí)慣、解決問題的思維方式、獨立思考與合作學(xué)習(xí)等;(3)教師專業(yè)知識的提升:如數(shù)學(xué)板書與電子屏幕的展示對學(xué)生思維的`影響、數(shù)學(xué)語言的訓(xùn)練對人們思維的影響、數(shù)學(xué)知識模式化教學(xué)的優(yōu)劣等。
2.案例研究的基本方法
(1)課堂觀察。觀察方法是指研究者按照一定的目的和計劃,在課堂教學(xué)活動的自然狀態(tài)下,用自己的感官和輔助工具對研究對象進行觀察研究的一種方法。它可以是教師自己對教學(xué)對象——學(xué)生,在課堂活動中的片斷進行觀察,也可以由其他教師來實施觀察,這兩種觀察的目的都是為了掌握課堂教學(xué)中的第一手資料。課堂觀察方法不限于用肉眼觀察、耳聽手記,還可利用各種工具如照相、錄音、攝像等作為輔助觀察的手段,以提高觀察的效果。對觀察的資料,可以逐字逐句整理成課堂教學(xué)實錄、教學(xué)程序表、提問技巧水平檢核表、提問行為類型頻次表、課堂教學(xué)時間分配表等,以便以后繼續(xù)分析案例提供翔實的原始材料。
(2)訪談與調(diào)查。對一些課堂教學(xué)不能觀察到的師生內(nèi)心活動,如教師教學(xué)的目的、教學(xué)程序的意圖、教學(xué)手段的運用以及教學(xué)達(dá)標(biāo)的成效等一些需要進一步了解的問題,可以通過與執(zhí)教教師的交談以及和學(xué)生的座談,以豐富和充實課堂教學(xué)觀察的材料;對學(xué)生在課堂教學(xué)活動中回答問題的心理狀態(tài)、解題思路等問題,也可以在課后做一些問卷調(diào)查;對學(xué)生達(dá)標(biāo)的成度、效度,也可以作一些測試調(diào)查。從這些訪談、調(diào)查的材料中,再分析課堂教學(xué)的現(xiàn)象,不難發(fā)現(xiàn)造成各種課堂現(xiàn)象與教師教學(xué)行為之間的因果關(guān)系,然后再具體尋找在哪個教學(xué)環(huán)節(jié)中出現(xiàn)問題,從中提煉出解決問題的對策。
(3)文獻(xiàn)分析。文獻(xiàn)分析是通過查閱文獻(xiàn)資料,從過去和現(xiàn)在的有關(guān)研究成果中受到啟發(fā),從中找到課堂教學(xué)現(xiàn)象的理論依據(jù),從而增強案例分析的說服力。當(dāng)然,對廣大第一線教師而言,這里所運用的文獻(xiàn)分析方法,并不是為了論證新教育理論,也不是去歸納教育的宏觀現(xiàn)象,而是通過有關(guān)教育理論文獻(xiàn)的查閱,去進一步解讀課堂教學(xué)的活動,挖掘案例中的教育思想。如在數(shù)學(xué)教學(xué)中,我們常常通過學(xué)生的動手操作來獲得有關(guān)的數(shù)學(xué)概念、法則與公式,那么,為什么要這樣做呢?就可以帶著問題,查閱、分析有關(guān)文獻(xiàn)資料,從學(xué)習(xí)中提高研究者自身的理論水平。
(二)案例研究報告的撰寫
1.常見的案例報告格式
撰寫教學(xué)案例,結(jié)構(gòu)可以靈活多樣,并非要千篇一律、一個模式,而是可以有不同的表現(xiàn)形式,如“案例背景——案例描述——案例分析”、“案例過程——案例反思”、“課例——問題——分析”、“主題與背景——情景描述——問題討論——詮釋與研究”等。當(dāng)前,國內(nèi)外課堂教學(xué)案例編寫的格式有多種多樣。但不管何種編寫格式,它們都有兩個共同的特點:一是對案例的客觀描述;二是對案例中所述問題、關(guān)鍵教學(xué)事件等的分析。
下面介紹兩種常用的案例編寫的格式:
(1)“描述+分析”式
此格式的特點是將整個案例分為兩大部分,前半部分主要為描述課堂教學(xué)活動的情景,后半部分主要針對情景中的一個問題進行理論分析并獲得結(jié)論。案例的描述一般是把課堂教學(xué)活動中的某一片斷像講故事一樣原原本本地、具體生動地描繪出來。描述的形式可以是一串問答式的課堂對話,也可以概括式地敘述,主要是提供一個或一連串課堂教學(xué)疑難的問題,并把教育理論、教育思想隱藏在描述之中。案例的分析部分是針對描述的情景發(fā)表個人或多人的感受,同時加以理論的分析與說明。分析方法可以是對描述中提出的一個問題,從幾個方面加以分析:也可以是對描述中的幾個問題,集中從一個方面加以分析。分析的目的是要從描述的情景中提煉問題的本質(zhì),講述理論的解釋,明確正確的方法,最終獲得對關(guān)鍵教學(xué)事件的正確把握。
(2)“背景+描述+問題+詮釋”式
此格式是一種要求比較高的編寫格式,而且,它在實際教學(xué)中的作用也更大。通常它將整個案例分為四個部分:
A.主題與背景
主題是關(guān)鍵教學(xué)事件中所反映的案例主要觀點,也是整篇案例的核心思想。背景主要敘述案例發(fā)生的地點、時間、人物的一些基本情況。當(dāng)然,這部分的內(nèi)容不宜很長,只需提綱挈領(lǐng)敘述清楚即可。
B.情景描述
與“描述+分析”式中的描述相同,主要突出主題所反映的課堂教學(xué)活動。
C.問題討論
這是根據(jù)主題要求與情景描述,進行的分析、歸納、總結(jié)與提煉,包括學(xué)科知識的要點、教學(xué)法和情景特點以及案例的說明與注意事項。這部分內(nèi)容主要是為案例教學(xué)服務(wù)的,目的是提高教師的認(rèn)識水平與學(xué)生主動學(xué)習(xí)的能力。不同的教學(xué)觀念,不同的教學(xué)手段,所提出的問題也不同。對案例中所提出的主題以及情景描述中提出的問題闡述自己的見解。
D.詮釋與研究
這部分主要是用教育理論對案例情景作多角度的解讀。它包括對課堂教學(xué)行為的技術(shù)資料、課堂教學(xué)實錄以及教學(xué)活動背后的故事等作理論上的分析。例如,在課堂教學(xué)中,我們?吹竭@樣的現(xiàn)象,課堂教學(xué)的效果高于預(yù)期的目標(biāo),反之教師期望的目標(biāo)學(xué)生沒有達(dá)到或有所偏離,教學(xué)內(nèi)容呈現(xiàn)的先后與學(xué)生理解的程度、教學(xué)方法運用與學(xué)生內(nèi)在動機的激發(fā)等環(huán)節(jié)存在著矛盾,這些事件的背后,必然隱含著豐富的教育思想。所以,通過詮釋,挖掘這些事件背后的內(nèi)在思想,揭示其教育規(guī)律就顯得十分的必要。
2.案例報告撰寫的關(guān)鍵
(1)掌握四個原則。要寫好教學(xué)案例,除了平時多積累素材,學(xué)習(xí)他人的案例作品以提高寫作技巧外,還應(yīng)把握以下四點:
A.主題性原則:要有捕捉關(guān)鍵教學(xué)事件的意識,以此確定案例研究的主題。為此要注意了解新的課程改革的動向、把握適合時代要求的數(shù)學(xué)教育方式、明確學(xué)生數(shù)學(xué)學(xué)習(xí)的難點和重點,尋找數(shù)學(xué)教師專業(yè)發(fā)展的途徑與規(guī)律。報告圍繞主題進行情景描述和獲得解決問題的策略。這種描述不是簡單的教學(xué)活動實錄,要反映事件發(fā)生的過程,重點描述反映關(guān)鍵教學(xué)事件的變化和戲劇化的情境,猶如記敘文寫作,突出主題,詳寫重點,雕刻高潮。
案例鮮明的主題通常關(guān)系到教學(xué)的核心理念、常見問題、處理方法等等,可以說,主題就是案例的靈魂。而主題的最佳表現(xiàn)形式就是文題直接體現(xiàn)主題。因此,設(shè)計主題就要有新意、有時代感,通俗地說就是與眾不同,要有獨特見解、獨家發(fā)現(xiàn)。來源于實踐的教學(xué)案例并非都有同等價值,關(guān)鍵要看撰寫者對實踐的發(fā)展與理論的升華程度,包括對題目的推敲。如有的教學(xué)案例重點描述了有戲劇性的情節(jié),用了“細(xì)節(jié)決定成敗”的題目,給人耳目一新,一下子揪住了讀者的心。再如,一些有創(chuàng)意的題目《“導(dǎo)之有方”方能“導(dǎo)之有效”》、《跳出數(shù)學(xué)教數(shù)學(xué)》、《在數(shù)學(xué)的疑難處悟成長》、《捕捉資源因勢利導(dǎo)》等等,讓人一看題目就有閱讀的欲望。實踐證明,在寫作案例時,選擇有感悟、有新意的內(nèi)容,在明確主題,恰當(dāng)擬題后再動筆,才能寫出高質(zhì)量的案例。
B.理論性原則:解決問題的策略中應(yīng)當(dāng)蘊含一定的教育基本原理和教育思想。實際是將自己對教育理念以及教育基本原理的理解滲透于描述的字里行間,比如學(xué)生做了什么,參與程度,投入程度如何,教師如何引導(dǎo)點撥,師生心理、行為變化情況等,無不體現(xiàn)教師的教學(xué)思想和教育基本原理。
C.敘事性原則:案例報告的書寫方式是敘事式,它不同于論述式。敘事方式必須以課堂教學(xué)生動的事實為主要情節(jié),可以夾敘夾議,也可以選擇情景片段,可以是一節(jié)課中的情景,也可以是圍繞一個主題的幾節(jié)課的情景片段。
D.學(xué)科性原則:數(shù)學(xué)案例報告一定要體現(xiàn)學(xué)科的特征,要有較深刻的理性思考,要反映數(shù)學(xué)的基本思想與方法,要符合課程標(biāo)準(zhǔn),滿足教材內(nèi)容的呈現(xiàn)方法,積極培養(yǎng)良好的思維習(xí)慣。就是撰寫者的教育思想和教育理念在教學(xué)實踐中具體體現(xiàn)。
(2)用好四種表述。教學(xué)案例的表述方法很多,可以歸納為以下四種方法:
A.故事式陳述法:就是教學(xué)全程或某一精彩教學(xué)片段實錄,包括教師和學(xué)生的一言一行。陳述時,根據(jù)操作程序作一點“簡評”,最后作“總評”。
B.以案說理:對教學(xué)過程進行陳述時,舍去與文題不相關(guān)或不重要的部分,并強化與主題相關(guān)的重要情節(jié),尤其是引發(fā)高潮的關(guān)鍵行為,然后有較長篇幅的理性思考。
C.圖表展示法:用圖表進行統(tǒng)計的形式體現(xiàn)撰寫者的教育思想,給人以一目了然的感覺,幫助讀者迅速了解撰寫者的寫作意圖,是常用的一種案例撰寫方法。比如,描述學(xué)生的參與人數(shù),投入程度,解決問題的質(zhì)量等多個問題,都可以在一張或數(shù)張圖表上用百分比或個(次)數(shù)進行統(tǒng)計。在每一張圖表后,應(yīng)有一段“分析”或“結(jié)論”,將撰寫者的教學(xué)理念進行理性闡述,亦可在圖表展示后,總的提出自己對案例的分析和建議。
D.分析討論法:在撰寫時,應(yīng)汲取分析討論中最精彩的部分做深入、細(xì)致的全面記錄,最后撰寫者還必須對討論情況做一分析,或提出一些值得今后進一步思考的問題。
3.優(yōu)秀案例的特征
(1)時代性:一個好的案例描述的是現(xiàn)實生活場景——案例的敘述要把事件置于一個時空框架之中,應(yīng)該以關(guān)注今天所面臨的疑難問題為著眼點,至少應(yīng)該是近年發(fā)生的事情,展示的整個事實材料應(yīng)該與整個時代及教學(xué)背景相照應(yīng),這樣的案例讀者更愿意接觸。一個好的案例可以使讀者有身臨其境的感覺,并對案例所涉及的人產(chǎn)生移情作用。
(2)真實性:一個好的案例應(yīng)該包括從案例所反映的對象那里引述的材料——案例寫作必須持一種客觀的態(tài)度,因此可引述一些口頭的或書面的、正式的或非正式的材料,如對話、筆記、信函等,以增強案例的真實感和可讀性。重要的事實性材料應(yīng)注明資料來源。
(3)適用性:一個好的案例需要針對面臨的疑難問題提出解決辦法——案例不能只是提出問題,它必須提出解決問題的主要思路、具體措施,并包含著解決問題的詳細(xì)過程,這應(yīng)該是案例寫作的重點。如果一個問題可以提出多種解決辦法的話,那么最為適宜的方案,就應(yīng)該是與特定的背景材料相關(guān)最密切的那一個。如果有包治百病、普遍適用的解決問題的辦法,那么案例這種形式就不必要存在了。
(4)反思性:一個好的案例需要有對已經(jīng)做出的解決問題的決策的評價——評價是為了給新的決策提供參考點。可在案例的開頭或結(jié)尾寫下案例作者對自己解決問題策略的評論,以點明案例的基本論點及其價值。
三、案例研究過程中需注意的問題
1.選材面過窄。從內(nèi)容上看,多數(shù)案例是關(guān)于課堂教學(xué)甚至局限于一節(jié)課的研究,往往不能說明問題,或者在一節(jié)課中,也只會從簡單的對話分析問題,做不到全方位、多角度。這說明教師對教學(xué)情境的豐富性、復(fù)雜性和聯(lián)系性認(rèn)識不夠。
2.缺乏典型性。有的案例對教學(xué)實踐沒有挖掘與反思,隨意摘取一些教學(xué)片段泛泛而談、人云亦云,沒有實用價值。不能夠通過對某一事件現(xiàn)象的分析、處理、詮釋,達(dá)到舉一反三的效果,這樣的案例對他人沒什么借鑒作用。
3.主題不明確。主要體現(xiàn)為:
(1)主題渙散。有的案例象記流水帳,沒有根據(jù)需要進行恰當(dāng)?shù)娜∩,看不出作者要反映、探討什么問題,缺乏指導(dǎo)性、創(chuàng)新性和參考性。
(2)定題過于隨意。有的案例直接用案例研究依據(jù)的文題為題目,如《“三角函數(shù)”教學(xué)案例》、《“拋物線”教學(xué)案例》等,題目不鮮明、不形象,影響讀者的選讀和案例的傳播。
4.結(jié)構(gòu)不合理。案例作為一種文體,有它自己的寫作結(jié)構(gòu),只有優(yōu)化案例的結(jié)構(gòu),才能增強案例的可讀性和指導(dǎo)性。如寫成一般的教學(xué)設(shè)計,一般包括“備課思路、教學(xué)目標(biāo)、教學(xué)重點、教學(xué)方法、課前準(zhǔn)備、教學(xué)內(nèi)容、教學(xué)過程”等內(nèi)容;寫成教學(xué)實錄,把一堂課從頭到尾詳盡地記錄下來,再寫上作者的看法;重記錄輕分析,過程描述多,評析少等等。沒有創(chuàng)新,平淡無趣,看不出案例研究和反映的問題。
5.描述與分析脫節(jié)。有的案例描述與分析矛盾,讓人不知所云;有時反映的是一種觀點,分析闡明的是另一種觀點,雖然不矛盾,但聯(lián)系不緊密;有的分析中熱衷于抄錄教育理論的一些條條,脫離案例描述的事件而空談理論,顯得空泛無物。
高中數(shù)學(xué)教案7
教學(xué)目的:掌握圓的標(biāo)準(zhǔn)方程,并能解決與之有關(guān)的問題
教學(xué)重點:圓的標(biāo)準(zhǔn)方程及有關(guān)運用
教學(xué)難點:標(biāo)準(zhǔn)方程的'靈活運用
教學(xué)過程:
一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程
二、掌握知識,鞏固練習(xí)
練習(xí):⒈說出下列圓的方程
、艌A心(3,-2)半徑為5⑵圓心(0,3)半徑為3
、仓赋鱿铝袌A的圓心和半徑
、牛▁-2)2+(y+3)2=3
、苮2+y2=2
、莤2+y2-6x+4y+12=0
⒊判斷3x-4y-10=0和x2+y2=4的位置關(guān)系
、磮A心為(1,3),并與3x-4y-7=0相切,求這個圓的方程
三、引伸提高,講解例題
例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)
練習(xí):1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。
例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓(xùn)練思維)
四、小結(jié)練習(xí)P771,2,3,4
五、作業(yè)P811,2,3,4
高中數(shù)學(xué)教案8
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
熟悉兩角和與差的正、余公式的推導(dǎo)過程,提高邏輯推理能力。
掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問題。
教學(xué)重難點
熟練兩角和與差的正、余弦公式的.正用、逆用和變用技巧。
教學(xué)過程
復(fù)習(xí)
兩角差的余弦公式
用- B代替B看看有什么結(jié)果?
高中數(shù)學(xué)教案9
教學(xué)目標(biāo):
1。通過生活中優(yōu)化問題的學(xué)習(xí),體會導(dǎo)數(shù)在解決實際問題中的作用,促進
學(xué)生全面認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值。
2。通過實際問題的研究,促進學(xué)生分析問題、解決問題以及數(shù)學(xué)建模能力的提高。
教學(xué)重點:
如何建立實際問題的目標(biāo)函數(shù)是教學(xué)的重點與難點。
教學(xué)過程:
一、問題情境
問題1把長為60cm的鐵絲圍成矩形,長寬各為多少時面積最大?
問題2把長為100cm的鐵絲分成兩段,各圍成正方形,怎樣分法,能使兩個正方形面積之各最?
問題3做一個容積為256L的方底無蓋水箱,它的高為多少時材料最?
二、新課引入
導(dǎo)數(shù)在實際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實際生活中的某些最值問題。
1。幾何方面的應(yīng)用(面積和體積等的最值)。
2。物理方面的應(yīng)用(功和功率等最值)。
3。經(jīng)濟學(xué)方面的應(yīng)用(利潤方面最值)。
三、知識建構(gòu)
例1在邊長為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無蓋的方底箱子,箱底的`邊長是多少時,箱底的容積最大?最大容積是多少?
說明1解應(yīng)用題一般有四個要點步驟:設(shè)——列——解——答。
說明2用導(dǎo)數(shù)法求函數(shù)的最值,與求函數(shù)極值方法類似,加一步與幾個極
值及端點值比較即可。
例2圓柱形金屬飲料罐的容積一定時,它的高與底與半徑應(yīng)怎樣選取,才
能使所用的材料最?
變式當(dāng)圓柱形金屬飲料罐的表面積為定值S時,它的高與底面半徑應(yīng)怎樣選取,才能使所用材料最?
說明1這種在定義域內(nèi)僅有一個極值的函數(shù)稱單峰函數(shù)。
說明2用導(dǎo)數(shù)法求單峰函數(shù)最值,可以對一般的求法加以簡化,其步驟為:
S1列:列出函數(shù)關(guān)系式。
S2求:求函數(shù)的導(dǎo)數(shù)。
S3述:說明函數(shù)在定義域內(nèi)僅有一個極大(。┲,從而斷定為函數(shù)的最大(。┲,必要時作答。
例3在如圖所示的電路中,已知電源的內(nèi)阻為,電動勢為。外電阻為
多大時,才能使電功率最大?最大電功率是多少?
說明求最值要注意驗證等號成立的條件,也就是說取得這樣的值時對應(yīng)的自變量必須有解。
例4強度分別為a,b的兩個光源A,B,它們間的距離為d,試問:在連接這兩個光源的線段AB上,何處照度最小?試就a=8,b=1,d=3時回答上述問題(照度與光的強度成正比,與光源的距離的平方成反比)。
例5在經(jīng)濟學(xué)中,生產(chǎn)單位產(chǎn)品的成本稱為成本函數(shù),記為;出售單位產(chǎn)品的收益稱為收益函數(shù),記為;稱為利潤函數(shù),記為。
(1)設(shè),生產(chǎn)多少單位產(chǎn)品時,邊際成本最低?
。2)設(shè),產(chǎn)品的單價,怎樣的定價可使利潤最大?
四、課堂練習(xí)
1。將正數(shù)a分成兩部分,使其立方和為最小,這兩部分應(yīng)分成____和___。
2。在半徑為R的圓內(nèi),作內(nèi)接等腰三角形,當(dāng)?shù)走吷细邽? 時,它的面積最大。
3。有一邊長分別為8與5的長方形,在各角剪去相同的小正方形,把四邊折起做成一個無蓋小盒,要使紙盒的容積最大,問剪去的小正方形邊長應(yīng)為多少?
4。一條水渠,斷面為等腰梯形,如圖所示,在確定斷面尺寸時,希望在斷面ABCD的面積為定值S時,使得濕周l=AB+BC+CD最小,這樣可使水流阻力小,滲透少,求此時的高h(yuǎn)和下底邊長b。
五、回顧反思
。1)解有關(guān)函數(shù)最大值、最小值的實際問題,需要分析問題中各個變量之間的關(guān)系,找出適當(dāng)?shù)暮瘮?shù)關(guān)系式,并確定函數(shù)的定義區(qū)間;所得結(jié)果要符合問題的實際意義。
(2)根據(jù)問題的實際意義來判斷函數(shù)最值時,如果函數(shù)在此區(qū)間上只有一個極值點,那么這個極值就是所求最值,不必再與端點值比較。
。3)相當(dāng)多有關(guān)最值的實際問題用導(dǎo)數(shù)方法解決較簡單。
六、課外作業(yè)
課本第38頁第1,2,3,4題。
高中數(shù)學(xué)教案10
一、教學(xué)目標(biāo)
【知識與技能】
在掌握圓的標(biāo)準(zhǔn)方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+Dx+Ey+F=0表示圓的條件。
【過程與方法】
通過對方程x+y+Dx+Ey+F=0表示圓的的條件的.探究,學(xué)生探索發(fā)現(xiàn)及分析解決問題的實際能力得到提高。
【情感態(tài)度與價值觀】
滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵學(xué)生創(chuàng)新,勇于探索。
二、教學(xué)重難點
【重點】
掌握圓的一般方程,以及用待定系數(shù)法求圓的一般方程。
【難點】
二元二次方程與圓的一般方程及標(biāo)準(zhǔn)圓方程的關(guān)系。
三、教學(xué)過程
(一)復(fù)習(xí)舊知,引出課題
1、復(fù)習(xí)圓的標(biāo)準(zhǔn)方程,圓心、半徑。
2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?
高中數(shù)學(xué)教案11
1. 幽默風(fēng)趣的你,平時在班里話語不多,也不張揚,但是,你在無意中的表現(xiàn)仍然贏得了很好的人際關(guān)系,學(xué)習(xí)上你認(rèn)真刻苦,也能及時的完成作業(yè),但是我覺得你總是沒把全部的心思用在學(xué)習(xí)上,不然以你的聰明,應(yīng)該保持在前三名才對啊,加油吧,也許關(guān)注學(xué)習(xí)成績對你才是更有意義的事!
2. 身為紀(jì)律委員的你,認(rèn)真負(fù)責(zé),以身作則,生活上的你平易近人,與同學(xué)關(guān)系融洽,學(xué)習(xí)上你勤奮刻苦,尤其在英語的學(xué)習(xí)上,顯示出了你的語言天賦,我覺得,假如你能把這份自信和興趣用到其他的學(xué)科學(xué)習(xí)中,也一定會收獲很多的!加油吧!
3. 你能嚴(yán)格遵守校規(guī),上課認(rèn)真聽講,作業(yè)完成認(rèn)真,樂于助人,愿意幫助同學(xué),大掃除時你不怕苦,不怕累,但是英語方面還不夠給力,所以,如果再投入一點,定會取得更好的結(jié)果,而且你還是一個愿意動腦筋的好學(xué)生,如果繼續(xù)保持下去定會取得驕人的成績!
4. 你是個懂禮貌明事理的孩子,你能嚴(yán)格遵守班級紀(jì)律,熱愛集體,對待學(xué)習(xí)態(tài)度端正,上課能夠?qū)P穆犞v,課下能夠認(rèn)真完成作業(yè)。你的學(xué)習(xí)方法有待改進,若能做到學(xué)習(xí)時心無旁騖就好了,掌握知識也不夠牢固,思維能力要進一步培養(yǎng)和提高,平時善于多動筆認(rèn)真作好筆記,多開動腦筋,相信你一定能在下學(xué)期更得更大的進步! 你學(xué)習(xí)認(rèn)真刻苦,也能善于思考,更十分活潑,并能嚴(yán)格遵守班級和宿舍紀(jì)律,上課你能認(rèn)真聽講,做作業(yè)時你十分專注,常常愿意花功夫鉆研難題,與同學(xué)相處也十分融洽,但若能在認(rèn)真做作業(yè)的同時,將速度提上去,我相信你會做得更好。要多講究學(xué)習(xí)方法,不能靠熬夜來完成學(xué)習(xí)任務(wù),提高學(xué)習(xí)效率,老師相信你一定能通過自己的努力取得更好的成績!
5. 雖然你個頭小,但每次你領(lǐng)讀時的那股認(rèn)真勁兒,令老師暗暗稱贊。你尊敬老師,和同學(xué)能和睦相處。甜美可愛的.你,經(jīng)過不斷的努力,你會更出色的!
6. 你是個活潑可愛的孩子,課堂上,你非常投入地學(xué)習(xí)著,朗讀課文時數(shù)你最有感情。中午你還主動給老師捶背,真是個會關(guān)心人的孩子,老師謝謝你。你十分喜愛讀課外書,不過課上可不能偷看啊!愿書成為你的好朋友。
7. 學(xué)習(xí)中你能嚴(yán)格要求自己,這是你永不落敗的秘訣。老師希望你能借助良好的學(xué)習(xí)方法,抓緊一切時間,笑在最后的一定是你!
8. 許麗君——你思想上進,踏實穩(wěn)重,誠實謙虛,尊敬老師。黑板報中有你傾注的心血,集體榮譽簿里有你的功勞。但學(xué)習(xí)的主動精神不夠,競爭意識不強,也很少看到你向老師請教,成績進步不明顯。請相信:世上沒有比腳更長的路,也沒有比心更高的山!望今后大膽進取,多思多問,發(fā)揮你的聰明才智,進一步激發(fā)活力,提高學(xué)習(xí)效率,持之以恒,美好的明天屬于你!
9. 每天你都背著書包高高興興地來上學(xué),學(xué)到了不少的知識,可惜只能記住很少的一部分。希望你改進學(xué)習(xí)方法,提高學(xué)習(xí)效率,在下學(xué)期有更大的進步!
10. 你言語不多,但待人誠懇、禮貌,作風(fēng)踏實,品學(xué)兼優(yōu),熱愛班級,關(guān)愛同學(xué),勤奮好學(xué),思維敏捷,成績優(yōu)秀。愿你扎實各科基礎(chǔ),堅持不懈,!一定能考上重點! 優(yōu)秀的男生肯定是逗人喜歡的,老師希望你能一如既往的優(yōu)秀,把這種優(yōu)秀保持在你人生的每一階段中。你的人生就是輝煌如意的!
高中數(shù)學(xué)教案12
1.1.1 任意角
教學(xué)目標(biāo)
。ㄒ唬 知識與技能目標(biāo)
理解任意角的概念(包括正角、負(fù)角、零角) 與區(qū)間角的概念.
。ǘ 過程與能力目標(biāo)
會建立直角坐標(biāo)系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫.
。ㄈ 情感與態(tài)度目標(biāo)
1. 提高學(xué)生的推理能力;
2.培養(yǎng)學(xué)生應(yīng)用意識. 教學(xué)重點
任意角概念的理解;區(qū)間角的集合的書寫. 教學(xué)難點
終邊相同角的集合的表示;區(qū)間角的集合的書寫.
教學(xué)過程
一、引入:
1.回顧角的定義
①角的第一種定義是有公共端點的兩條射線組成的圖形叫做角.
、诮堑牡诙N定義是角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形.
二、新課:
1.角的有關(guān)概念:
、俳堑亩x:
角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形.
、诮堑拿Q:
、劢堑姆诸悾 A
正角:按逆時針方向旋轉(zhuǎn)形成的角 零角:射線沒有任何旋轉(zhuǎn)形成的角
負(fù)角:按順時針方向旋轉(zhuǎn)形成的角
④注意:
、旁诓灰鸹煜那闆r下,“角α ”或“∠α ”可以簡化成“α ”;
、屏憬堑慕K邊與始邊重合,如果α是零角α =0°;
⑶角的概念經(jīng)過推廣后,已包括正角、負(fù)角和零角.
、菥毩(xí):請說出角α、β、γ各是多少度?
2.象限角的概念:
①定義:若將角頂點與原點重合,角的始邊與x軸的非負(fù)半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角.
例1.在直角坐標(biāo)系中,作出下列各角,并指出它們是第幾象限的角.
、 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;
答:分別為1、2、3、4、1、2象限角.
3.探究:教材P3面
終邊相同的角的表示:
所有與角α終邊相同的角,連同α在內(nèi),可構(gòu)成一個集合S={ β | β = α +
k·360° ,
k∈Z},即任一與角α終邊相同的角,都可以表示成角α與整個周角的.和. 注意: ⑴ k∈Z
、 α是任一角;
⑶ 終邊相同的角不一定相等,但相等的角終邊一定相同.終邊相同的角有無限個,它們相差
360°的整數(shù)倍;
⑷ 角α + k·720°與角α終邊相同,但不能表示與角α終邊相同的所有角.
例2.在0°到360°范圍內(nèi),找出與下列各角終邊相等的角,并判斷它們是第幾象限角.
⑴-120°;
⑵640°;
、牵950°12’.
答:⑴240°,第三象限角;
、280°,第四象限角;
⑶129°48’,第二象限角;
例4.寫出終邊在y軸上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}.
例5.寫出終邊在y?x上的角的集合S,并把S中適合不等式-360°≤β<720°的元素β寫出來.
4.課堂小結(jié)
、俳堑亩x;
、诮堑姆诸悾
正角:按逆時針方向旋轉(zhuǎn)形成的角 零角:射線沒有任何旋轉(zhuǎn)形成的角
負(fù)角:按順時針方向旋轉(zhuǎn)形成的角
、巯笙藿;
④終邊相同的角的表示法.
5.課后作業(yè):
、匍喿x教材P2-P5;
、诮滩腜5練習(xí)第1-5題;
、劢滩腜.9習(xí)題1.1第1、2、3題 思考題:已知α角是第三象限角,則2α,
解:??角屬于第三象限,
? k·360°+180°<α<k·360°+270°(k∈Z)
因此,2k·360°+360°<2α<2k·360°+540°(k∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z)
故2α是第一、二象限或終邊在y軸的非負(fù)半軸上的角. 又k·180°+90°<
各是第幾象限角?
。糼·180°+135°(k∈Z) .
。糿·360°+135°(n∈Z) ,
當(dāng)k為偶數(shù)時,令k=2n(n∈Z),則n·360°+90°<此時,
屬于第二象限角
<n·360°+315°(n∈Z) ,
當(dāng)k為奇數(shù)時,令k=2n+1 (n∈Z),則n·360°+270°<此時,
屬于第四象限角
因此
屬于第二或第四象限角.
1.1.2弧度制
。ㄒ唬
教學(xué)目標(biāo)
。ǘ 知識與技能目標(biāo)
理解弧度的意義;了解角的集合與實數(shù)集R之間的可建立起一一對應(yīng)的關(guān)系;熟記特殊角的弧度數(shù).
。ㄈ 過程與能力目標(biāo)
能正確地進行弧度與角度之間的換算,能推導(dǎo)弧度制下的弧長公式及扇形的面積公式,并能運用公式解決一些實際問題
(四) 情感與態(tài)度目標(biāo)
通過新的度量角的單位制(弧度制)的引進,培養(yǎng)學(xué)生求異創(chuàng)新的精神;通過對弧度制與角度制下弧長公式、扇形面積公式的對比,讓學(xué)生感受弧長及扇形面積公式在弧度制下的簡潔美. 教學(xué)重點
弧度的概念.弧長公式及扇形的面積公式的推導(dǎo)與證明. 教學(xué)難點
“角度制”與“弧度制”的區(qū)別與聯(lián)系.
教學(xué)過程
一、復(fù)習(xí)角度制:
初中所學(xué)的角度制是怎樣規(guī)定角的度量的? 規(guī)定把周角的作為1度的角,用度做單位來度量角的制度叫做角度制.
二、新課:
1.引 入:
由角度制的定義我們知道,角度是用來度量角的, 角度制的度量是60進制的,運用起來不太方便.在數(shù)學(xué)和其他許多科學(xué)研究中還要經(jīng)常用到另一種度量角的制度—弧度制,它是如何定義呢?
2.定 義
我們規(guī)定,長度等于半徑的弧所對的圓心角叫做1弧度的角;用弧度來度量角的單位制叫做弧度制.在弧度制下, 1弧度記做1rad.在實際運算中,常常將rad單位省略.
3.思考:
(1)一定大小的圓心角?所對應(yīng)的弧長與半徑的比值是否是確定的?與圓的半徑大小有關(guān)嗎?
(2)引導(dǎo)學(xué)生完成P6的探究并歸納: 弧度制的性質(zhì):
、侔雸A所對的圓心角為
、谡麍A所對的圓心角為
③正角的弧度數(shù)是一個正數(shù).
、茇(fù)角的弧度數(shù)是一個負(fù)數(shù).
、萘憬堑幕《葦(shù)是零.
⑥角α的弧度數(shù)的絕對值|α|= .
4.角度與弧度之間的轉(zhuǎn)換:
、賹⒔嵌然癁榛《龋
、趯⒒《然癁榻嵌龋
5.常規(guī)寫法:
① 用弧度數(shù)表示角時,常常把弧度數(shù)寫成多少π 的形式, 不必寫成小數(shù).
、 弧度與角度不能混用.
弧長等于弧所對應(yīng)的圓心角(的弧度數(shù))的絕對值與半徑的積.
例1.把67°30’化成弧度.
例2.把? rad化成度.
例3.計算:
(1)sin4
(2)tan1.5.
8.課后作業(yè):
①閱讀教材P6 –P8;
、诮滩腜9練習(xí)第1、2、3、6題;
、劢滩腜10面7、8題及B2、3題.
高中數(shù)學(xué)教案13
教學(xué)目標(biāo)
(1)了解算法的含義,體會算法思想。
(2)會用自然語言和數(shù)學(xué)語言描述簡單具體問題的算法;
(3)學(xué)習(xí)有條理地、清晰地表達(dá)解決問題的步驟,培養(yǎng)邏輯思維能力與表達(dá)能力。
教學(xué)重難點
重點:算法的含義、解二元一次方程組的算法設(shè)計。
難點:把自然語言轉(zhuǎn)化為算法語言。
情境導(dǎo)入
電影《神槍手》中描述的凌靖是一個天生的狙擊手,他百發(fā)百中,最難打的位置對他來說也是輕而易舉,是香港警察狙擊手隊伍的第一神槍手、作為一名狙擊手,要想成功地完成一次狙擊任務(wù),一般要按步驟完成以下幾步:
第一步:觀察、等待目標(biāo)出現(xiàn)(用望遠(yuǎn)鏡或瞄準(zhǔn)鏡);
第二步:瞄準(zhǔn)目標(biāo);
第三步:計算(或估測)風(fēng)速、距離、空氣濕度、空氣密度;
第四步:根據(jù)第三步的結(jié)果修正彈著點;
第五步:開槍;
第六步:迅速轉(zhuǎn)移(或隱蔽)
以上這種完成狙擊任務(wù)的方法、步驟在數(shù)學(xué)上我們叫算法。
課堂探究
預(yù)習(xí)提升
1、定義:算法可以理解為由基本運算及規(guī)定的運算順序所構(gòu)成的完整的解題步驟,或者看成按照要求設(shè)計好的有限的確切的計算序列,并且這樣的步驟或序列能夠解決一類問題。
2、描述方式
自然語言、數(shù)學(xué)語言、形式語言(算法語言)、框圖。
3、算法的要求
(1)寫出的`算法,必須能解決一類問題,且能重復(fù)使用;
(2)算法過程要能一步一步執(zhí)行,每一步執(zhí)行的操作,必須確切,不能含混不清,而且經(jīng)過有限步后能得出結(jié)果。
4、算法的特征
(1)有限性:一個算法應(yīng)包括有限的操作步驟,能在執(zhí)行有窮的操作步驟之后結(jié)束。
(2)確定性:算法的計算規(guī)則及相應(yīng)的計算步驟必須是唯一確定的。
(3)可行性:算法中的每一個步驟都是可以在有限的時間內(nèi)完成的基本操作,并能得到確定的結(jié)果。
(4)順序性:算法從初始步驟開始,分為若干個明確的步驟,前一步是后一步的前提,后一步是前一步的后續(xù),且除了最后一步外,每一個步驟只有一個確定的后續(xù)。
(5)不唯一性:解決同一問題的算法可以是不唯一的
課堂典例講練
命題方向1對算法意義的理解
例1、下列敘述中,
、僦矘湫枰\苗、挖坑、栽苗、澆水這些步驟;
②按順序進行下列運算:1+1=2,2+1=3,3+1=4,…99+1=100;
、蹚那鄭u乘動車到濟南,再從濟南乘飛機到倫敦觀看奧運會開幕式;
、3x>x+1;
⑤求所有能被3整除的正數(shù),即3,6,9,12。
能稱為算法的個數(shù)為( )
A、2
B、3
C、4
D、5
【解析】根據(jù)算法的含義和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一個明確的步驟,不符合明確性;⑤的步驟是無窮的,與算法的有限性矛盾。
【答案】B
[規(guī)律總結(jié)]
1、正確理解算法的概念及其特點是解決問題的關(guān)鍵、
2、針對判斷語句是否是算法的問題,要看它的步驟是否是明確的和有效的,而且能在有限步驟之內(nèi)解決這一問題、
【變式訓(xùn)練】下列對算法的理解不正確的是________
、僖粋算法應(yīng)包含有限的步驟,而不能是無限的
②算法可以理解為由基本運算及規(guī)定的運算順序構(gòu)成的完整的解題步驟
、鬯惴ㄖ械拿恳徊蕉紤(yīng)當(dāng)有效地執(zhí)行,并得到確定的結(jié)果
④一個問題只能設(shè)計出一個算法
【解析】由算法的有限性指包含的步驟是有限的故①正確;
由算法的明確性是指每一步都是確定的故②正確;
由算法的每一步都是確定的,且每一步都應(yīng)有確定的結(jié)果故③正確;
由對于同一個問題可以有不同的算法故④不正確。
【答案】④
命題方向2解方程(組)的算法
例2、給出求解方程組的一個算法。
[思路分析]解線性方程組的常用方法是加減消元法和代入消元法,這兩種方法沒有本質(zhì)的差別,為了適用于解一般的線性方程組,以便于在計算機上實現(xiàn),我們用高斯消元法(即先將方程組化為一個三角形方程組,再通過回代方程求出方程組的解)解線性方程組、
[規(guī)范解答]方法一:算法如下:
第一步,①×(-2)+②,得(-2+5)y=-14+11
即方程組可化為
第二步,解方程③,可得y=-1,④
第三步,將④代入①,可得2x-1=7,x=4
第四步,輸出4,-1
方法二:算法如下:
第一步,由①式可以得到y(tǒng)=7-2x,⑤
第二步,把y=7-2x代入②,得x=4
第三步,把x=4代入⑤,得y=-1
第四步,輸出4,-1
[規(guī)律總結(jié)]1、本題用了2種方法求解,對于問題的求解過程,我們既要強調(diào)對“通法、通解”的理解,又要強調(diào)對所學(xué)知識的靈活運用。
2、設(shè)計算法時,經(jīng)常遇到解方程(組)的問題,一般是按照數(shù)學(xué)上解方程(組)的方法進行設(shè)計,但應(yīng)注意全面考慮方程解的情況,即先確定方程(組)是否有解,有解時有幾個解,然后根據(jù)求解步驟設(shè)計算法步驟。
【變式訓(xùn)練】
【解】算法如下:S1,①+2×②得5x=1;③
S2,解③得x=;
S3,②-①×2得5y=3;④
S4,解④得y=;
命題方向3篩選問題的算法設(shè)計
例3、設(shè)計一個算法,對任意3個整數(shù)a、b、c,求出其中的最小值、
[思路分析]比較a,b比較m與c―→最小數(shù)
[規(guī)范解答]算法步驟如下:
1、比較a與b的大小,若a
2、比較m與c的大小,若m
[規(guī)律總結(jié)]求最小(大)數(shù)就是從中篩選出最小(大)的一個,篩選過程中的每一步都是比較兩個數(shù)的大小,保證了篩選的可行性,這種方法可以推廣到從多個不同數(shù)中篩選出滿足要求的一個。
【變式訓(xùn)練】在下列數(shù)字序列中,寫出搜索89的算法:
21,3,0,9,15,72,89,91,93
[解析]1、先找到序列中的第一個數(shù)m,m=21;
2、將m與89比較,是否相等,如果相等,則搜索到89;
3、如果m與89不相等,則往下執(zhí)行;
4、繼續(xù)將序列中的其他數(shù)賦給m,重復(fù)第2步,直到搜索到89。
命題方向4非數(shù)值性問題的算法
例4、一個人帶三只狼和三只羚羊過河,只有一條船,同船可以容一個人和兩只動物,沒有人在的時候,如果狼的數(shù)量不少于羚羊的數(shù)量,狼就會吃掉羚羊。
(1)設(shè)計安全渡河的算法;
(2)思考每一步算法所遵循的共同原則是什么?
高中數(shù)學(xué)教案14
教學(xué)目標(biāo):1.進一步理解線性規(guī)劃的概念;會解簡單的線性規(guī)劃問題;
2.在運用建模和數(shù)形結(jié)合等數(shù)學(xué)思想方法分析、解決問題的過程中;提高解決問題的能力;
3.進一步提高學(xué)生的合作意識和探究意識。
教學(xué)重點:線性規(guī)劃的概念及其解法
教學(xué)難點:
代數(shù)問題幾何化的過程
教學(xué)方法:啟發(fā)探究式
教學(xué)手段:運用多媒體技術(shù)
教學(xué)過程:1.實際問題引入。
問題一:小王和小李合租了一輛小轎車外出旅游.小王駕車平均速度為每小時70公里,平均耗油量為每小時6公升;小李駕車平均速度為每小時50公里,平均耗油量為每小時4公升.現(xiàn)知道油箱內(nèi)油量為60公升,兩人駕車時間累計不能超過12小時.問小王和小李分別駕車多少時間時,行駛路程最遠(yuǎn)?
2.探究和討論下列問題。
(1)實際問題轉(zhuǎn)化為一個怎樣的數(shù)學(xué)問題?
(2)滿足不等式組①的條件的點構(gòu)成的區(qū)域如何表示?
(3)關(guān)于x、y的一個表達(dá)式z=70x+50y的幾何意義是什么?
(4)z的幾何意義是什么?
(5)z的最大值如何確定?
讓學(xué)生達(dá)成以下共識:小王駕車時間x和小李駕車時間y受到時間(12小時)和油量(60公升)的限制,即
x+y≤12
6x+4y≤60 ①
x≥0
y≥0
行駛路程可以表示成關(guān)于x、y的一個表達(dá)式:z=70x+50y 由數(shù)形結(jié)合可知:經(jīng)過點B(6,6)的直線所對應(yīng)的z最大.
則zmax=6×70+6×50=720
結(jié)論:小王和小李分別駕車6小時時,行駛路程最遠(yuǎn)為720公里.
解題反思:
問題解決過程中體現(xiàn)了那些重要的數(shù)學(xué)思想?
3.線性規(guī)劃的有關(guān)概念。
什么是“線性規(guī)劃問題”?涉及約束條件、線性約束條件、目標(biāo)函數(shù)、線性目標(biāo)函數(shù)、可行解、可行域和最優(yōu)解等概念.
4.進一步探究線性規(guī)劃問題的解。
問題二:若小王和小李駕車平均速度為每小時60公里和40公里,其它條件不變,問小王和小李分別駕車多少時間時,行駛路程最遠(yuǎn)?
要求:請你寫出約束條件、目標(biāo)函數(shù),作出可行域,求出最優(yōu)解。
問題三:如果把不等式組①中的兩個“≤”改為“≥”,是否存在最優(yōu)解?
5.小結(jié)。
(1)數(shù)學(xué)知識;(2)數(shù)學(xué)思想。
6.作業(yè)。
(1)閱讀教材:P.60-63;
(2)課后練習(xí):教材P.65-2,3;
(3)在自己生活中尋找一個簡單的線性規(guī)劃問題,寫出約束條件,確定目標(biāo)函數(shù),作出可行域,并求出最優(yōu)解。
《一個數(shù)列的研究》教學(xué)設(shè)計
教學(xué)目標(biāo):
1.進一步理解和掌握數(shù)列的有關(guān)概念和性質(zhì);
2.在對一個數(shù)列的探究過程中,提高提出問題、分析問題和解決問題的能力;
3.進一步提高問題探究意識、知識應(yīng)用意識和同伴合作意識。
教學(xué)重點:
問題的提出與解決
教學(xué)難點:
如何進行問題的探究
教學(xué)方法:
啟發(fā)探究式
教學(xué)過程:
問題:已知{an}是首項為1,公比為 的無窮等比數(shù)列。對于數(shù)列{an},提出你的問題,并進行研究,你能得到一些什么樣的結(jié)論?
研究方向提示:
1.?dāng)?shù)列{an}是一個等比數(shù)列,可以從等比數(shù)列角度來進行研究;
2.研究所給數(shù)列的項之間的關(guān)系;
3.研究所給數(shù)列的子數(shù)列;
4.研究所給數(shù)列能構(gòu)造的新數(shù)列;
5.?dāng)?shù)列是一種特殊的函數(shù),可以從函數(shù)性質(zhì)角度來進行研究;
6.研究所給數(shù)列與其它知識的聯(lián)系(組合數(shù)、復(fù)數(shù)、圖形、實際意義等)。
針對學(xué)生的研究情況,對所提問題進行歸類,選擇部分類型問題共同進行研究、分析與解決。
課堂小結(jié):
1.研究一個數(shù)列可以從哪些方面提出問題并進行研究?
2.你最喜歡哪位同學(xué)的研究?為什么?
課后思考題: 1.將{an}推廣為一般的無窮等比數(shù)列:1,q,q2,…,qn-1,… ,上述一些研究結(jié)論會有什么變化?
2.若將{an}改為等差數(shù)列:1,1+d,2+d,…,1+(n-1)d,… ,是否可以進行類比研究?
開展研究性學(xué)習(xí),培養(yǎng)問題解決能力
一、對“研究性學(xué)習(xí)”和“問題解決”的認(rèn)識 研究性學(xué)習(xí)是一種與接受性學(xué)習(xí)相對應(yīng)的學(xué)習(xí)方式,泛指學(xué)生主動探究問題的學(xué)習(xí)。研究性學(xué)習(xí)也可以說是一種學(xué)習(xí)活動:學(xué)生在教師指導(dǎo)下,在自己的學(xué)習(xí)生活和社會生活中選擇課題,以類似科學(xué)研究的方式去主動地獲取知識、應(yīng)用知識、解決問題。
“問題解決”(problem solving)是美國數(shù)學(xué)教育界在二十世紀(jì)八十年代的主要口號,即認(rèn)為應(yīng)當(dāng)以“問題解決”作為學(xué)校數(shù)學(xué)教育的中心。
問題解決能力是一種重要的數(shù)學(xué)能力,其核心是“創(chuàng)新精神”與“實踐能力”。在數(shù)學(xué)教學(xué)活動中開展研究性學(xué)習(xí)是培養(yǎng)問題解決能力的主要途徑。
二、“問題解決”課堂教學(xué)模式的建構(gòu)與實踐 以研究性學(xué)習(xí)活動為載體,以培養(yǎng)問題解決能力為核心的課堂教學(xué)模式(以下簡稱為“問題解決”課堂教學(xué)模式)試圖通過問題情境創(chuàng)設(shè),激發(fā)學(xué)生的求知欲,以獨立思考和交流討論的形式,發(fā)現(xiàn)、分析并解決問題,培養(yǎng)處理信息、獲取新知、應(yīng)用知識的能力,提高合作意識、探究意識和創(chuàng)新意識。
。ㄒ唬╆P(guān)于“問題解決”課堂教學(xué)模式
通過實施“問題解決”課堂教學(xué)模式,希望能夠達(dá)到以下的功能目標(biāo):學(xué)習(xí)發(fā)現(xiàn)問題的`方法,開掘創(chuàng)造性思維潛力,培養(yǎng)主動參與、團結(jié)協(xié)作精神,增進師生、同伴之間的情感交流,形成自覺運用數(shù)學(xué)基礎(chǔ)知識、基本技能和數(shù)學(xué)思想方法分析問題、解決問題的能力和意識。
。ǘ⿺(shù)學(xué)學(xué)科中的問題解決能力的培養(yǎng)目標(biāo)
數(shù)學(xué)問題解決能力培養(yǎng)的目標(biāo)可以有不同層次的要求:會審題,會建模,會轉(zhuǎn)化,會歸類,會反思,會編題。
。ㄈ皢栴}解決”課堂教學(xué)模式的教學(xué)流程
。ㄋ模皢栴}解決”課堂教學(xué)評價標(biāo)準(zhǔn)
1. 教學(xué)目標(biāo)的確定;
2. 教學(xué)方法的選擇;
3. 問題的選擇;
4. 師生主體意識的體現(xiàn);
5.教學(xué)策略的運用。
。ㄎ澹┝私鈱W(xué)生的數(shù)學(xué)問題解決能力的途徑
(六)開展研究性學(xué)習(xí)活動對教師的能力要求
高中數(shù)學(xué)教案15
1.課題
填寫課題名稱(高中代數(shù)類課題)
2.教學(xué)目標(biāo)
(1)知識與技能:
通過本節(jié)課的學(xué)習(xí),掌握......知識,提高學(xué)生解決實際問題的能力;
(2)過程與方法:
通過......(討論、發(fā)現(xiàn)、探究),提高......(分析、歸納、比較和概括)的能力;
(3)情感態(tài)度與價值觀:
通過本節(jié)課的學(xué)習(xí),增強學(xué)生的學(xué)習(xí)興趣,將數(shù)學(xué)應(yīng)用到實際生活中,增加學(xué)生數(shù)學(xué)學(xué)習(xí)的樂趣。
3.教學(xué)重難點
(1)教學(xué)重點:本節(jié)課的知識重點
(2)教學(xué)難點:易錯點、難以理解的知識點
4.教學(xué)方法(一般從中選擇3個就可以了)
(1)討論法
(2)情景教學(xué)法
(3)問答法
(4)發(fā)現(xiàn)法
(5)講授法
5.教學(xué)過程
(1)導(dǎo)入
簡單敘述導(dǎo)入課題的方式和方法(例:復(fù)習(xí)、類比、情境導(dǎo)出本節(jié)課的課題)
(2)新授課程(一般分為三個小步驟)
、俸唵沃v解本節(jié)課基礎(chǔ)知識點(例:奇函數(shù)的定義)。
②歸納總結(jié)該課題中的重點知識內(nèi)容,尤其對該注意的一些情況設(shè)置易錯點,進行強調(diào)?梢栽O(shè)計分組討論環(huán)節(jié)(分組判斷幾組函數(shù)圖像是否為奇函數(shù),并歸納奇函數(shù)圖像的特點。設(shè)置定義域不關(guān)于原點對稱的函數(shù)是否為奇函數(shù)的易錯點)。
、弁卣寡由欤瑢⑺鶎W(xué)知識拓展延伸到實際題目中,去解決實際生活中的問題。
。ㄔ谛率谡n里面一定要表下出講課的大體流程,但是不必太過詳細(xì)。)
(3)課堂小結(jié)
教師提問,學(xué)生回答本節(jié)課的收獲。
(4)作業(yè)提高
布置作業(yè)(盡量與實際生活相聯(lián)系,有所創(chuàng)新)。
6.教學(xué)板書
2.高中數(shù)學(xué)教案格式
一.課題(說明本課名稱)
二.教學(xué)目的(或稱教學(xué)要求,或稱教學(xué)目標(biāo),說明本課所要完成的教學(xué)任務(wù))
三.課型(說明屬新授課,還是復(fù)習(xí)課)
四.課時(說明屬第幾課時)
五.教學(xué)重點(說明本課所必須解決的關(guān)鍵性問題)
六.教學(xué)難點(說明本課的學(xué)習(xí)時易產(chǎn)生困難和障礙的知識傳授與能力培養(yǎng)點)
七.教學(xué)方法要根據(jù)學(xué)生實際,注重引導(dǎo)自學(xué),注重啟發(fā)思維
八.教學(xué)過程(或稱課堂結(jié)構(gòu),說明教學(xué)進行的內(nèi)容、方法步驟)
九.作業(yè)處理(說明如何布置書面或口頭作業(yè))
十.板書設(shè)計(說明上課時準(zhǔn)備寫在黑板上的內(nèi)容)
十一.教具(或稱教具準(zhǔn)備,說明輔助教學(xué)手段使用的工具)
十二.教學(xué)反思:(教者對該堂課教后的感受及學(xué)生的收獲、改進方法)
3.高中數(shù)學(xué)教案范文
【教學(xué)目標(biāo)】
1.知識與技能
(1)理解等差數(shù)列的定義,會應(yīng)用定義判斷一個數(shù)列是否是等差數(shù)列:
(2)賬務(wù)等差數(shù)列的通項公式及其推導(dǎo)過程:
(3)會應(yīng)用等差數(shù)列通項公式解決簡單問題。
2.過程與方法
在定義的理解和通項公式的推導(dǎo)、應(yīng)用過程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴(yán)密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認(rèn)知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。
3.情感、態(tài)度與價值觀
通過教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動,培養(yǎng)學(xué)生主動探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問題的過程中,使學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好習(xí)慣。
【教學(xué)重點】
、俚炔顢(shù)列的概念;
、诘炔顢(shù)列的通項公式
【教學(xué)難點】
、倮斫獾炔顢(shù)列“等差”的特點及通項公式的含義;
、诘炔顢(shù)列的通項公式的推導(dǎo)過程.
【學(xué)情分析】
我所教學(xué)的學(xué)生是我校高一(7)班的.學(xué)生(平行班學(xué)生),經(jīng)過一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。
【設(shè)計思路】
1、教法
①啟發(fā)引導(dǎo)法:這種方法有利于學(xué)生對知識進行主動建構(gòu);有利于突出重點,突破難點;有利于調(diào)動學(xué)生的主動性和積極性,發(fā)揮其創(chuàng)造性.
②分組討論法:有利于學(xué)生進行交流,及時發(fā)現(xiàn)問題,解決問題,調(diào)動學(xué)生的積極性.
、壑v練結(jié)合法:可以及時鞏固所學(xué)內(nèi)容,抓住重點,突破難點.
2、學(xué)法
引導(dǎo)學(xué)生首先從三個現(xiàn)實問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導(dǎo)出等差數(shù)列的通項公式;可以對各種能力的同學(xué)引導(dǎo)認(rèn)識多元的推導(dǎo)思維方法.
【教學(xué)過程】
一、創(chuàng)設(shè)情境,引入新課
1、從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?
2、水庫管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數(shù)列?
3、我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個什么數(shù)列?
教師:以上三個問題中的數(shù)蘊涵著三列數(shù).
學(xué)生:
、0,5,10,15,20,25,….
、18,15.5,13,10.5,8,5.5.
、10072,10144,10216,10288,10360.
(設(shè)置意圖:從實例引入,實質(zhì)是給出了等差數(shù)列的現(xiàn)實背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實生活中大量存在的數(shù)學(xué)模型.通過分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識的自主性,培養(yǎng)學(xué)生的歸納能力.
二、觀察歸納,形成定義
、0,5,10,15,20,25,….
、18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
思考1上述數(shù)列有什么共同特點?
思考2根據(jù)上數(shù)列的共同特點,你能給出等差數(shù)列的一般定義嗎?
思考3你能將上述的文字語言轉(zhuǎn)換成數(shù)學(xué)符號語言嗎?
教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.
學(xué)生:分組討論,可能會有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.
教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號角度理解等差數(shù)列的定義.
(設(shè)計意圖:通過對一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會到等差數(shù)列的規(guī)律和共同特點;一開始抓。骸皬牡诙椘,每一項與它的前一項的差為同一常數(shù)”,落實對等差數(shù)列概念的準(zhǔn)確表達(dá).)
三、舉一反三,鞏固定義
1、判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教師出示題目,學(xué)生思考回答.教師訂正并強調(diào)求公差應(yīng)注意的問題.
注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負(fù)數(shù),也可以為0.
(設(shè)計意圖:強化學(xué)生對等差數(shù)列“等差”特征的理解和應(yīng)用).
2、思考4:設(shè)數(shù)列{an}的通項公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?
(設(shè)計意圖:強化等差數(shù)列的證明定義法)
四、利用定義,導(dǎo)出通項
1、已知等差數(shù)列:8,5,2,…,求第200項?
2、已知一個等差數(shù)列{an}的首項是a1,公差是d,如何求出它的任意項an呢?
教師出示問題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進行具體評價、引導(dǎo),總結(jié)推導(dǎo)方法,體會歸納思想以及累加求通項的方法;讓學(xué)生初步嘗試處理數(shù)列問題的常用方法.
(設(shè)計意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學(xué)生善于動腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識.鼓勵學(xué)生自主解答,培養(yǎng)學(xué)生運算能力)
五、應(yīng)用通項,解決問題
1、判斷100是不是等差數(shù)列2,9,16,…的項?如果是,是第幾項?
2、在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.
3、求等差數(shù)列3,7,11,…的第4項和第10項
教師:給出問題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.
學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補充:已知等差數(shù)列的首項和公差就可以求出其通項公式
(設(shè)計意圖:主要是熟悉公式,使學(xué)生從中體會公式與方程之間的聯(lián)系.初步認(rèn)識“基本量法”求解等差數(shù)列問題.)
六、反饋練習(xí):教材13頁練習(xí)1
七、歸納總結(jié):
1、一個定義:
等差數(shù)列的定義及定義表達(dá)式
2、一個公式:
等差數(shù)列的通項公式
3、二個應(yīng)用:
定義和通項公式的應(yīng)用
教師:讓學(xué)生思考整理,找?guī)讉代表發(fā)言,最后教師給出補充
(設(shè)計意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認(rèn)識和掌握基本概念,并靈活運用基本概念.)
【設(shè)計反思】
本設(shè)計從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動性,增強學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過程中,學(xué)生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學(xué)生分析問題和解決問題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問題、學(xué)生探討解決問題為途徑,以相互補充展開教學(xué),總結(jié)科學(xué)合理的知識體系,形成師生之間的良性互動,提高課堂教學(xué)效率.
【高中數(shù)學(xué)教案】相關(guān)文章:
高中數(shù)學(xué)教案11-01
高中數(shù)學(xué)教案05-05
高中數(shù)學(xué)教案12-19
高中數(shù)學(xué)教案【熱門】08-27
高中數(shù)學(xué)教案【精】06-17
高中數(shù)學(xué)教案【熱】06-26
【精】高中數(shù)學(xué)教案06-22
高中數(shù)學(xué)教案模板11-07