在线视频国产欧美另类,偷拍亚洲一区一区二区三区,日韩中文字幕在线视频,日本精品久久久久中文字幕

<small id="qpqhz"></small>
  • <legend id="qpqhz"></legend>

      <td id="qpqhz"><strong id="qpqhz"></strong></td>
      <small id="qpqhz"><menuitem id="qpqhz"></menuitem></small>
    1. 圓錐的面積教學(xué)課件

      時間:2021-03-28 19:11:24 教學(xué)課件 我要投稿

      圓錐的面積教學(xué)課件

        本節(jié)課的內(nèi)容是圓錐的側(cè)面積,首先讓學(xué)生通過觀察圓錐,認(rèn)識到它的表面是由一個曲面和一個圓面圍成的,然后再思考,圓錐的曲面展開圖在平面上是什么樣的圖形,最后經(jīng)過學(xué)生自己動手實(shí)踐得出結(jié)論:圓錐的側(cè)面展開圖是一個扇形,把圓錐的母線、底面半徑和展開圖中的半徑之間的關(guān)系找出來,根據(jù)上節(jié)課的扇形面積公式就可求出圓錐的側(cè)面積,進(jìn)一步運(yùn)用公式進(jìn)行有關(guān)計(jì)算.

      圓錐的面積教學(xué)課件

        讓學(xué)生先觀察圓錐,再想象圓錐的側(cè)面展開圖,最后經(jīng)過自己動手實(shí)踐得出結(jié)論這一系列活動,可以培養(yǎng)學(xué)生的空間想象能力、動手操作能力、歸納總結(jié)能力,使他們的手、腦、口并用,幫助他們有意識地積累活動經(jīng)驗(yàn),使他們獲得成功的體驗(yàn).

        對于學(xué)生的觀察、操作、推理、歸納等活動,教師要進(jìn)行鼓勵性的評價,使他們能提高學(xué)習(xí)數(shù)學(xué)的信心和決心.

        教學(xué)目標(biāo)

        (一)教學(xué)知識點(diǎn)

        1.經(jīng)歷探索圓錐側(cè)面積計(jì)算公式的過程.

        2.了解圓錐的側(cè)面積計(jì)算公式,并會應(yīng)用公式解決問題.

        (二)能力訓(xùn)練要求

        1.經(jīng)歷探索圓錐側(cè)面積計(jì)算公式的過程,發(fā)展學(xué)生的實(shí)踐探索能力.

        2.了解圓錐的側(cè)面積計(jì)算公式后,能用公式進(jìn)行計(jì)算,訓(xùn)練學(xué)生的數(shù)學(xué)應(yīng)用能力.

        (三)情感與價值觀要求

        1.讓學(xué)生先觀察實(shí)物,再想象結(jié)果,最后經(jīng)過實(shí)踐得出結(jié)論,通過這一系列活動,培養(yǎng)學(xué)生的觀察、想象、實(shí)踐能力,同時訓(xùn)練他們的語言表達(dá)能力,使他們獲得學(xué)習(xí)數(shù)學(xué)的經(jīng)驗(yàn),感受成功的體驗(yàn).

        2.通過運(yùn)用公式解決實(shí)際問題,讓學(xué)生懂得數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,克服困難的決心,更好地服務(wù)于實(shí)際.

        教學(xué)重點(diǎn)

        1. 經(jīng)歷探索圓錐側(cè)面積計(jì)算公式的過程.

        2.了解圓錐的側(cè)面積計(jì)算公式,并會應(yīng)用公式解決問題.

        教學(xué)難點(diǎn)

        經(jīng)歷探索圓錐側(cè)面積計(jì)算公式.

        教學(xué)方法

        觀察——想象——實(shí)踐——總結(jié)法

        教具準(zhǔn)備

        一個圓錐模型(紙做)

        第一張:(記作§3.8 A)

        第二張:(記作§3.8 B)

        教學(xué)過程

       、.創(chuàng)設(shè)問題情境,引入新課

        [師]大家見過圓錐嗎?你能舉出實(shí)例嗎?

        [生]見過,如漏斗、蒙古包.

        [師]你們知道圓錐的表面是由哪些面構(gòu)成的嗎?請大家互相交流.

        [生]圓錐的表面是由一個圓面和一個曲面圍成的.

        [師]圓錐的曲面展開圖是什么形狀呢?應(yīng)怎樣計(jì)算它的面積呢?本節(jié)課我們將解決這些問題.

       、.新課講解

        一、探索圓錐的側(cè)面展開圖的形狀

        [師](向?qū)W生展示圓錐模型)請大家先觀察模型,再展開想象,討論圓錐的側(cè)面展開圖是什么形狀.

        [生]圓錐的側(cè)面展開圖是扇形.

        [師]能說說理由嗎?

        [生甲]因?yàn)閿?shù)學(xué)知識是一環(huán)扣一環(huán)的,后面的知識是在前面知識的基礎(chǔ)上學(xué)習(xí)的.上節(jié)課的內(nèi)容是弧長及扇形面積,本節(jié)課的內(nèi)容是圓錐的側(cè)面積,而弧長不是面積,所以我猜想圓錐的側(cè)面展開圖應(yīng)該是扇形.

        [師]這位同學(xué)用的雖然是猜想,但也是有一定的道理的,并不是憑空瞎想,還有其他理由嗎?[

        [生乙]我是自己實(shí)踐得出結(jié)論的,我拿一個扇形的紙片卷起來,就得到了一個圓錐模型.

        [師]很好,究竟大家的猜想是否正確呢?下面我就給大家做個演示(把圓錐沿一母線剪開),請大家觀察側(cè)面展開圖是什么形狀的?

        [生]是扇形.

        [師]大家的猜想非常正確,既然已經(jīng)知道側(cè)面展開圖是扇形,那么根據(jù)上節(jié)課的扇形面積公式就能計(jì)算出圓錐的側(cè)面積,由于我們不能把所有圓錐都剖開,在展開圖中的扇形的半徑和圓心角與不展開圖形中的哪些因素有關(guān)呢?這將是我們進(jìn)一步研究的對象.

        二、探索圓錐的側(cè)面積公式

        [師]圓錐的側(cè)面展開圖是

        一個扇形,如圖,設(shè)圓錐的母

        線(generating line)長為l,

        底面圓的半徑為r,那么這個圓

        錐的側(cè)面展開圖中扇形的半徑即

        為母線長l,扇形的弧長即為底

        面圓的周長2πr,根據(jù)扇形面積公式

        可知S= 2πrl=πrl.因此圓錐的側(cè)面積為S側(cè)=πrl.

        圓錐的側(cè)面積與底面積之和稱為圓錐的全 面積(surfacearea),全面積為S全=πr2+πrl.

        三、利用圓錐的側(cè)面積公式進(jìn)行計(jì)算.

        圣誕節(jié)將近,某家商店正在制作圣誕節(jié)的圓錐形紙帽.已知紙帽的底面周長為58 cm,高為20cm,要制作20頂這樣的紙帽至少要用多少平方厘米的紙?(結(jié)果精確到0.1cm2)

        分析:根據(jù)題意,要求紙帽的面積,

        即求圓錐的側(cè)面積.現(xiàn)在已知底面圓的

        周長,從中可求出底面圓的半徑,從而

        可求出扇形的弧長,在高h(yuǎn)、底面圓的半

        徑r、母線l組成的直角三角形中,根據(jù)勾

        股定理求出母線l,代入S側(cè)=πrl中即可.

        解:設(shè)紙帽的底面半徑為r cm,母線長為lcm,則r= ,

        l= ≈22.03cm,

        S圓錐側(cè)=πrl≈ ×58×22.03=638.87cm2.

        638.87×20=12777.4 cm2.

        所以,至少需要12777.4 cm2的紙.

        如圖,已知Rt△ABC

        的斜邊AB=13cm,一條

        直角邊AC=5 cm,以直線

        AB為軸旋轉(zhuǎn)一周得一個幾

        何體.求這個幾何體的表

        面積.

        分析:首先應(yīng)了解這個幾何體

        的形狀是上下兩個圓錐,共用一個底面,表面積即為兩個圓錐的側(cè)面積之和.根據(jù)S側(cè)= πR2或S側(cè)=πrl可知,用第二個公式比較好求,但是得求出底面圓的半徑,因?yàn)锳B垂直于底面圓,在Rt△ABC中,由OC、AB=BC、AC可求出r,問題就解決了.

        解:在Rt△ABC中,AB=13cm,AC=5cm,

        ∴BC=12 cm.

        ∵OCAB=BCAC,

        ∴r=OC= .

        ∴S表=πr(BC+AC)= π× ×(12+5)

        = πcm2.

       、.課堂練習(xí)

        隨堂練習(xí)

       、.課時小結(jié)

        本節(jié)課學(xué)習(xí)了如下內(nèi)容:

        探索圓錐的側(cè)面展開圖的形狀,以及面積公式,并能用公式進(jìn)行計(jì)算.

        Ⅴ.課后作業(yè)

        習(xí)題3.11

       、.活動與探究

        探索圓柱的側(cè)面展開圖

        在生活中,我們常常遇到圓柱形的物體,如油桶、鉛筆、圓形柱子等,在小學(xué)我們已知圓柱是由兩個圓的底面和一個側(cè)面圍成的,底面是兩個等圓,側(cè)面是一個曲面,兩個底面之間的距離是圓柱的高.

        圓柱也可以看作是由一個矩形旋轉(zhuǎn)得到的,旋轉(zhuǎn)軸叫做圓柱的軸,圓柱側(cè)面上平行于軸的線段都叫做圓柱的`母線.容易看出,圓柱的軸通過上、下底面的圓心,圓柱的母線長都相等,并等于圓柱的高,圓柱的兩個底面是平行的.

        如圖,把圓柱的側(cè)

        面沿它的一條母線剪開,

        展在一個平面上,側(cè)面

        的展開圖是矩形,這個

        矩形的一邊長等于圓柱

        的高,即圓柱的母線長,

        另一邊長是底面圓的周長,

        所以圓柱的側(cè)面積等于底

        面圓的周長乘以圓柱的高.

        [例1]如圖(1),把一個圓柱形木塊沿它的軸剖開,得矩形ABCD.已知AD=18 cm,AB=30 cm,求這個圓柱形木塊的表面積(精確到1 cm2).

        解:如圖(2),AD是圓柱底面的直徑,AB是圓柱的母線,設(shè)圓柱的表面積為S,則S=2S圓+S側(cè).

        ∴S=2π( )2+2π× ×30=162π+540π≈2204 cm2.

        所以這個圓柱形木塊的表面積約為2204 cm2

        板書設(shè)計(jì)

        3.8圓錐的側(cè)面積

        一、1.探索圓錐的側(cè)面展開圖的形狀,

        2.探索圓錐的側(cè)面積公式;

        3.利用圓錐的側(cè)面積公式進(jìn)行計(jì)算.

        二、課堂練習(xí)

        三、課時小結(jié)

        四、課后作業(yè)

        備課資料

        參考練習(xí)

        1.圓錐母線長5 cm,底面半徑為3 cm,那么它的側(cè)面展形圖的圓心角是…( )

        A.180° B.200° C. 225° D.216°

        2.若一個圓錐的母線長是它底面圓半徑的3倍,則它的側(cè)面展開圖的圓心角是( )

        A.180° B. 90°

        C.120° D.135°

        3.在半徑為50 cm的圖形鐵片上剪去一塊扇形鐵皮,用剩余部分制做成一個底面直徑為80 cm,母線長為50 cm的圓錐形煙囪帽,則剪去的扇形的圓心角的度數(shù)為( )

        A.288° B.144° C.72° D.36°

        4.用一個半徑長為6cm的半圓圍成一個圓錐的側(cè)面,則此圓錐的底面半徑為 ( )

        A.2 cm B.3 cm C.4 cm D.6 cm

        答案:1.D 2.C 3.C 4.B


      【圓錐的面積教學(xué)課件】相關(guān)文章:

      關(guān)于圓的面積教學(xué)課件04-11

      最新圓的面積教學(xué)課件04-07

      有關(guān)圓錐體積教學(xué)課件04-06

      圓錐的體積教學(xué)反思05-14

      圓錐的體積教學(xué)反思05-14

      《圓錐的體積》教學(xué)反思05-12

      《圓錐的體積》教學(xué)反思 15篇04-19

      圓錐的體積教學(xué)反思15篇04-20

      圓的面積教學(xué)設(shè)計(jì)03-30

      圓的面積的教學(xué)設(shè)計(jì)03-09