在线视频国产欧美另类,偷拍亚洲一区一区二区三区,日韩中文字幕在线视频,日本精品久久久久中文字幕

<small id="qpqhz"></small>
  • <legend id="qpqhz"></legend>

      <td id="qpqhz"><strong id="qpqhz"></strong></td>
      <small id="qpqhz"><menuitem id="qpqhz"></menuitem></small>
    1. 實用文檔>數(shù)學(xué)圓復(fù)習(xí)的教案

      數(shù)學(xué)圓復(fù)習(xí)的教案

      時間:2024-08-10 01:11:11

      數(shù)學(xué)圓復(fù)習(xí)的教案

      數(shù)學(xué)圓復(fù)習(xí)的教案

      數(shù)學(xué)圓復(fù)習(xí)的教案

        一、基本知識和需說明的問題:

        (一)圓的有關(guān)性質(zhì),本節(jié)中最重要的定理有4個.

        1.垂徑定理:本定理和它的三個推論說明: 在(1)垂直于弦(不是直徑的弦);(2)平分弦;(3)平分弦所對的弧;(4)過圓心(是半徑或是直徑)這四個語句中,滿足兩個就可得到其它兩個的結(jié)論.如垂直于弦(不是直徑的弦)的直徑,平分弦且平分弦所對的兩條弧。條件是垂直于弦(不是直徑的弦)的直徑,結(jié)論是平分弦、平分弧。再如弦的垂直平分線,經(jīng)過圓心且平分弦所對的弧。條件是垂直弦,、分弦,結(jié)論是過圓心、平分弦.

        應(yīng)用:在圓中,弦的一半、半徑、弦心距組成一個直角三角形,利用勾股定理解直角三角形的知識,可計算弦長、半徑、弦心距和弓形的高.

        2.圓心角、弧、弦、弦心距四者之間的關(guān)系定理:在同圓和等圓中, 圓心角、弧、弦、弦心距這四組量中有一組量相等,則其它各組量均相等.這個定理證弧相等、弦相等、圓心角相等、弦心距相等是經(jīng)常用的.

        3.圓周角定理:此定理在證題中不大用,但它的推論,即弧相等所對的圓周角相等;在同圓或等圓中,圓周角相等,弧相等.直徑所對的圓周角是直角,90的圓周角所對的弦是直徑,都是很重要的.條件中若有直徑,通常添加輔助線形成直角.

        4.圓內(nèi)接四邊形的性質(zhì):略.

        (二)直線和圓的位置關(guān)系

        1.性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.(有了切線,將切點與圓心連結(jié),則半徑與切線垂直,所以連結(jié)圓心和切點,這條輔助線是常用的.)

        2.切線的判定有兩種方法.

        ①若直線與圓有公共點,連圓心和公共點成半徑,證明半徑與直線垂直即可.

       、谌糁本和圓公共點不確定,過圓心做直線的垂線,證明它是半徑(利用定義證)。根據(jù)不同的條件,選擇不同的添加輔助線的方法是極重要的.

        3.三角形的內(nèi)切圓:內(nèi)心是內(nèi)切圓圓心,具有的性質(zhì)是:到三角形的三邊距離相等,還要注意說某點是三角形的內(nèi)心.

        連結(jié)三角形的頂點和內(nèi)心,即是角平分線.

        4.切線長定理:自圓外一點引圓的切線,則切線和半徑、圓心到該點的連線組成直角三角形,還要注意, A

        B

        (三)圓和圓的位置關(guān)系

        1.記住5種位置關(guān)系的圓心距d與兩圓半徑之間的相等或不等關(guān)系.會利用d與R,r之間的關(guān)系確定兩圓的位置關(guān)系,會利用d,R,r之間的關(guān)系確定兩圓的位置關(guān)系.

        2.相交兩圓,添加公共弦,通過公共弦將兩圓連結(jié)起來.

        (四)正多邊形和圓

        1、弧長公式

        2、扇形面積公式

        3、圓錐側(cè)面積計算公式

        S=

        二鞏固練習(xí)

        一、精心選一選,相信自己的判斷!(本題共12小題,每小題3分,共33分)

        1.如圖,把自行車的兩個車輪看成同一平面內(nèi)的兩個圓,則它們的位置關(guān)系是( )

        A.外離 B.外切 C.相交 D.內(nèi)切

        2.如圖,在⊙O中,ABC=50,則AOC等于( )

        A.50 B.80 C.90 D.100

        3.如圖,AB是⊙O的直徑,ABC=30,則BAC =( )

        A.90 B.60 C.45 D.30( )

        4.已知⊙O的直徑為12cm,圓心到直線L的距離為6cm,則直線L與⊙O的公共點的個數(shù)為( ) A.2 B.1 C.0 D.不確定

        5.已知⊙O1與⊙O2的半徑分別為3cm和7cm,兩圓的圓心距O1O2 =10cm,則兩圓的位置關(guān)系是( ) A.外切 B.內(nèi)切 C.相交 D.相離

        6.已知在⊙O中,弦AB的長為8厘米,圓心O到AB的距離為3厘米,則⊙O的半徑是( )

        A.3厘米 B.4厘米 C.5厘米 D.8厘米

        7.下列命題錯誤的是( )

        A.經(jīng)過三個點一定可以作圓 B.三角形的外心到三角形各頂點的距離相等

        C.同圓或等圓中,相等的圓心角所對的弧相等 D.經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

        8.在平面直角坐標系中,以點(2,3)為圓心,2為半徑的圓必定( )

        A.與x軸相離、與y軸相切 B.與x軸、y軸都相離

        C.與x軸相切、與y軸相離 D.與x軸、y軸都相切

        9.在Rt△ABC中,C=90,AC=12,BC=5,將△ABC繞邊AC所在直線旋轉(zhuǎn)一周得到圓錐,則該圓錐的側(cè)面積是()

        A.25 B.65 C.90 D.130

        10.如圖,Rt△ABC中,ACB=90,CAB=30,BC=2,O、H分別為邊AB、AC的中點,將△ABC繞點B順時針旋轉(zhuǎn)120到△A1BC1的位置,則整個旋轉(zhuǎn)過程中線段OH所掃過部分的面積(即陰影部分面積)為( )

        A.73 -78 3 B.43 +78 3 C. D.43 +3

        11.如圖,已知圓錐的底面圓半徑為r(r0),母線長OA為3r,C為母線OB的中點,在圓錐的側(cè)面上,一只螞蟻從點A爬行到點C的最短路線長為( )

        A.3 2 r B.33 2 r C. 3 3 r D.33 r

        二、細心填一填,試自己的身手!(本大題共6小題,每小題3分,共18分)

        12.各邊相等的圓內(nèi)接多邊形_____正多邊形;各角相等的圓內(nèi)接多邊形_____正多邊形.(填是或不是)

        13.△ABC的內(nèi)切圓半徑為r,

        △ABC的周長為l,則△ABC的面積

        為_______________ .

        14.已知在⊙O中,半徑r=13,

        弦AB∥CD,且AB=24,CD=10,則AB與CD的距離為__________.

        15.同圓的內(nèi)接正四邊形和內(nèi)接正方邊形的連長比為

        16.如圖,在邊長為3cm的正方形中,⊙P與⊙Q相外切,且⊙P分別與DA、DC邊相切,⊙Q分別與BA、BC邊相切,則圓心距PQ為______________.

        17.如圖,⊙O的半徑為3cm,B為⊙O外一點,OB交⊙O于點A,AB=OA,動點P從點A出發(fā),以cm/s的速度在⊙O上按逆時針方向運動一周回到點A立即停止.當(dāng)點P運動的時間為_________s時,BP與⊙O相切.

        三、用心做一做,顯顯自己的能力!(本大題共10小題,滿分70分)

        18.(本題滿分8分)如圖,圓柱形水管內(nèi)原有積水的水平面寬CD=20cm,水深GF=2cm.若水面上升2cm(EG=2cm),則此時水面寬AB為多少?

        19.(本題滿分8分)如圖,PA,PB是⊙O的切線,點A,B為切點,AC是⊙O的直徑,ACB=70.求P的度數(shù).

        20.(本題滿分8分)如圖,線段AB經(jīng)過圓心O,交⊙O于點A、C,點D在⊙O上,連接AD、BD,B=30,BD是⊙O的切線嗎?請說明理由.

        21.如圖10,BC是⊙O的直徑,A是弦BD延長24線上一點,切線DE平分AC于E.

        (1)求證: AC是⊙O 的切線.(2)若A =45,AC =10,求四邊形BCED的面積.

        22. (本題滿分10分)

        如圖,在△ABC中,AB=AC,D是BC中點,AE平分BAD交BC于點E,點O是AB上一點,⊙O過A、E兩點, 交AD于點G,交AB于點F.

        (1)求證:BC與⊙O相切;

        (2)當(dāng)BAC=120時,求EFG的度數(shù)

        23.如圖,AC是⊙O的直徑,PA、PB切⊙O于A、B,AC、PB的延長線交于D,若AC=3cm,DC=1cm,

        DB=2cm,求:(1)PB的長;(2)DOP的面積.

        24.(本題滿分12分)已知:如圖△ABC內(nèi)接于⊙O,OHAC于H,過A點的切線與OC的延長線交于點D,B=30,OH=53 .請求出:

        (1)AOC的度數(shù);

        (2)劣弧AC的長(結(jié)果保留

        (3)線段AD的長(結(jié)果保留根號).

      【數(shù)學(xué)圓復(fù)習(xí)的教案】相關(guān)文章:

      數(shù)學(xué)教案:圓的認識02-12

      高三數(shù)學(xué)的復(fù)習(xí)教案03-19

      《圓的整理與復(fù)習(xí)》教學(xué)設(shè)計(精選17篇)09-14

      夢圓飛天的教案設(shè)計08-22

      夢圓飛天教案例子07-13

      物態(tài)變化復(fù)習(xí)教案03-19

      語文寫字復(fù)習(xí)教案03-19

      關(guān)于認識自我復(fù)習(xí)教案03-20

      整式的乘法小結(jié)與復(fù)習(xí)教案03-20

      鹵族元素復(fù)習(xí)教案設(shè)計10-26

      用戶協(xié)議