在线视频国产欧美另类,偷拍亚洲一区一区二区三区,日韩中文字幕在线视频,日本精品久久久久中文字幕

<small id="qpqhz"></small>
  • <legend id="qpqhz"></legend>

      <td id="qpqhz"><strong id="qpqhz"></strong></td>
      <small id="qpqhz"><menuitem id="qpqhz"></menuitem></small>
    1. 初一數(shù)學知識點總結

      時間:2023-04-18 08:54:58 振濠 總結 我要投稿

      初一數(shù)學知識點總結

        在年少學習的日子里,很多人都經常追著老師們要知識點吧,知識點有時候特指教科書上或考試的知識。為了幫助大家掌握重要知識點,下面是小編幫大家整理的初一數(shù)學知識點總結,歡迎閱讀與收藏。

      初一數(shù)學知識點總結

        初一數(shù)學知識點總結 1

        平面直角坐標系

        1.定義:平面內畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。水平的數(shù)軸稱為x軸或橫軸,習慣上取向右為正方向;豎直的數(shù)軸稱為y軸或縱軸,取向上方向為正方向;兩坐標軸的交點為平面直角坐標系的原點。

        2.平面上的任意一點都可以用一個有序數(shù)對來表示,記為(a,b),a是橫坐標,b是縱坐標。

        3.原點的坐標是(0,0);

        縱坐標相同的點的連線平行于x軸;

        橫坐標相同的點的連線平行于y軸;

        x軸上的點的縱坐標為0,表示為(x,0);

        y軸上的點的橫坐標為0,表示為(0,y)。

        4.建立了平面直角坐標系以后,坐標平面就被兩條坐標軸分為了Ⅰ、Ⅱ、Ⅲ、Ⅳ四個部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標軸上的點不屬于任何象限。

        5.幾個象限內點的特點:

        第一象限(+,+);第二象限(—,+);

        第三象限(—,—);第四象限(+,—)。

        6.(x,y)關于原點對稱的點是(—x,—y);

        (x,y)關于x軸對稱的點是(x,—y);

        (x,y)關于y軸對稱的點是(—x,y)。

        7.點到兩軸的距離:點P(x,y)到x軸的距離是︱y︳;點P(x,y)到y(tǒng)軸的距離是︱x︳。

        8.在第一、三象限角平分線上的點的坐標是(m,m);

        在第二、四象限叫平分線上的.點的坐標是(m,—m)。

        不等式與不等式組

        (1)不等式

        用不等號(<,>,≥,≤,≠)連接的式子叫做不等式。

        (2)不等式的性質

        ①對稱性;

       、趥鬟f性;

       、奂臃▎握{性,即同向不等式可加性;

       、艹朔▎握{性;

        ⑤同向正值不等式可乘性;

       、拚挡坏仁娇沙朔;

       、哒挡坏仁娇砷_方;

        (3)一元一次不等式

        用不等號連接的,含有一個未知數(shù),并且未知數(shù)的次數(shù)都是1,未知數(shù)的系數(shù)不為0,左右兩邊為整式的式子叫做一元一次不等式。

        (4)一元一次不等式組

        一元一次不等式組是由幾個含有同一個未知數(shù)的一元一次不等式組成的不等式組。

        點、線、面、體知識點

        1.幾何圖形的組成

        點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。

        線:面和面相交的地方是線,分為直線和曲線。

        面:包圍著體的是面,分為平面和曲面。

        體:幾何體也簡稱體。

        2.點動成線,線動成面,面動成體。

        點、直線、射線和線段的表示

        在幾何里,我們常用字母表示圖形。

        一個點可以用一個大寫字母表示。

        一條直線可以用一個小寫字母表示。

        一條射線可以用端點和射線上另一點來表示。

        一條線段可用它的端點的兩個大寫字母來表示。

        注意:

        (1)表示點、直線、射線、線段時,都要在字母前面注明點、直線、射線、線段。

        (2)直線和射線無長度,線段有長度。

        (3)直線無端點,射線有一個端點,線段有兩個端點。

        (4)點和直線的位置關系有線面兩種:

       、冱c在直線上,或者說直線經過這個點。

       、邳c在直線外,或者說直線不經過這個點。

        角的種類

        銳角:大于0°,小于90°的角叫做銳角。

        直角:等于90°的角叫做直角。

        鈍角:大于90°而小于180°的角叫做鈍角。

        平角:等于180°的角叫做平角。

        優(yōu)角:大于180°小于360°叫優(yōu)角。

        劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。

        周角:等于360°的角叫做周角。

        負角:按照順時針方向旋轉而成的角叫做負角。

        正角:逆時針旋轉的角為正角。

        0角:等于零度的角。

        余角和補角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補角。等角的余角相等,等角的補角相等。

        對頂角:兩條直線相交后所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構成兩對對頂角;閷斀堑膬蓚角相等。

        還有許多種角的關系,如內錯角,同位角,同旁內角(三線八角中,主要用來判斷平行)。

        初一數(shù)學知識點總結 2

        1、相反數(shù)

        (1)相反數(shù)的概念:只有符號不同的兩個數(shù)叫做互為相反數(shù).

        (2)相反數(shù)的意義:掌握相反數(shù)是成對出現(xiàn)的,不能單獨存在,從數(shù)軸上看,除0外,互為相反數(shù)的兩個數(shù),它們分別在原點兩旁且到原點距離相等.

        (3)多重符號的化簡:與“+”個數(shù)無關,有奇數(shù)個“﹣”號結果為負,有偶數(shù)個“﹣”號,結果為正.

        (4)規(guī)律方法總結:求一個數(shù)的相反數(shù)的方法就是在這個數(shù)的前邊添加“﹣”,如a的相反數(shù)是﹣a,m+n的相反數(shù)是﹣(m+n),這時m+n是一個整體,在整體前面添負號時,要用小括號.

        2、代數(shù)式求值

        (1)代數(shù)式的:用數(shù)值代替代數(shù)式里的字母,計算后所得的結果叫做代數(shù)式的值.

        (2)代數(shù)式的求值:求代數(shù)式的值可以直接代入、計算.如果給出的代數(shù)式可以化簡,要先化簡再求值.

        題型簡單總結以下三種:

        ①已知條件不化簡,所給代數(shù)式化簡;

       、谝阎獥l件化簡,所給代數(shù)式不化簡;

        ③已知條件和所給代數(shù)式都要化簡.

        3、由三視圖判斷幾何體

        (1)由三視圖想象幾何體的形狀,首先,應分別根據(jù)主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側面的'形狀,然后綜合起來考慮整體形狀.

        (2)由物體的三視圖想象幾何體的形狀是有一定難度的,可以從以下途徑進行分析:

       、俑鶕(jù)主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側面的形狀,以及幾何體的長、寬、高;

       、趶膶嵕和虛線想象幾何體看得見部分和看不見部分的輪廓線;

        ③熟記一些簡單的幾何體的三視圖對復雜幾何體的想象會有幫助;

       、芾糜扇晥D畫幾何體與有幾何體畫三視圖的互逆過程,反復練習,不斷總結方法

        初一數(shù)學知識點總結 3

        正數(shù)和負數(shù)

       、薄⒄龜(shù)和負數(shù)的概念

        負數(shù):比0小的數(shù)正數(shù):比0大的數(shù)0既不是正數(shù),也不是負數(shù)

        注意:

       、僮帜竌可以表示任意數(shù),當a表示正數(shù)時,—a是負數(shù);當a表示負數(shù)時,—a是正數(shù);當a表示0時,—a仍是0。(如果出判斷題為:帶正號的數(shù)是正數(shù),帶負號的`數(shù)是負數(shù),這種說法是錯誤的,例如+a,—a就不能做出簡單判斷)

        ②正數(shù)有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數(shù)的符號是正號。

        2、具有相反意義的量

        若正數(shù)表示某種意義的量,則負數(shù)可以表示具有與該正數(shù)相反意義的量,比如:

        零上8℃表示為:+8℃;零下8℃表示為:—8℃

        3、0表示的意義

       。1)0表示“沒有”,如教室里有0個人,就是說教室里沒有人;

       。2)0是正數(shù)和負數(shù)的分界線,0既不是正數(shù),也不是負數(shù)。如:

       。3)0表示一個確切的量。如:0℃以及有些題目中的基準,比如以海平面為基準,則0米就表示海平面。

        有理數(shù)

        1、有理數(shù)的概念

       。1)正整數(shù)、0、負整數(shù)統(tǒng)稱為整數(shù)(0和正整數(shù)統(tǒng)稱為自然數(shù))

       。2)正分數(shù)和負分數(shù)統(tǒng)稱為分數(shù)

       。3)正整數(shù),0,負整數(shù),正分數(shù),負分數(shù)都可以寫成分數(shù)的形式,這樣的數(shù)稱為有理數(shù)。

        理解:只有能化成分數(shù)的數(shù)才是有理數(shù)。

        ①π是無限不循環(huán)小數(shù),不能寫成分數(shù)形式,不是有理數(shù)。

        ②有限小數(shù)和無限循環(huán)小數(shù)都可化成分數(shù),都是有理數(shù)。

       、壅麛(shù)也能化成分數(shù),也是有理數(shù)

        注意:引入負數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴大了,像—2,—4,—6,—8也是偶數(shù),—1,—3,—5也是奇數(shù)。

        初一數(shù)學知識點總結 4

        1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

        2.三角形的分類

        3.三角形的三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

        4.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

        5.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

        6.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

        7.高線、中線、角平分線的意義和做法

        8.三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩(wěn)定性。

        9.三角形內角和定理:三角形三個內角的和等于180°

        推論1直角三角形的兩個銳角互余;

        推論2三角形的一個外角等于和它不相鄰的兩個內角和;

        推論3三角形的一個外角大于任何一個和它不相鄰的內角;

        三角形的內角和是外角和的一半。

        10.三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的'外角。

        11.三角形外角的性質

        (1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;

        (2)三角形的一個外角等于與它不相鄰的兩個內角和;

        (3)三角形的一個外角大于與它不相鄰的任一內角;

        (4)三角形的外角和是360°。

        12.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。

        13.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。

        14.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

        15.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

        16.多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內角相等。

        17.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。

        18.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

        19.公式與性質

        多邊形內角和公式:n邊形的內角和等于(n-2)·180°

        20.多邊形外角和定理:

        (1)n邊形外角和等于n·180°-(n-2)·180°=360°

        (2)多邊形的每個內角與它相鄰的外角是鄰補角,所以n邊形內角和加外角和等于n·180°

        21.多邊形對角線的條數(shù):

        (1)從n邊形的一個頂點出發(fā)可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形。

        (2)n邊形共有n(n-3)/2條對角線。

        初一數(shù)學知識點總結 5

        1、單項式的定義:

        由數(shù)或字母的積組成的式子叫做單項式。

        說明:單獨的一個數(shù)或者單獨的一個字母也是單項式。

        2、單項式的系數(shù):

        單項式中的數(shù)字因數(shù)叫這個單項式的系數(shù).

        說明:

        ⑴單項式的系數(shù)可以是整數(shù),也可能是分數(shù)或小數(shù)。如3x的系數(shù)是3的32系數(shù)是1;4.8a的系數(shù)是4.8; 3

       、茊雾検降南禂(shù)有正有負,確定一個單項式的系數(shù),要注意包含在它前面的符號,4xy2的系數(shù)是4;2x2y的系數(shù)是4;

        ⑶對于只含有字母因數(shù)的單項式,其系數(shù)是1或-1,不能認為是0,如ab的系數(shù)是-1;ab的系數(shù)是1;

        ⑷表示圓周率的π,在數(shù)學中是一個固定的常數(shù),當它出現(xiàn)在單項式中時,應將其作為系數(shù)的一部分,而不能當成字母。如2πxy的系數(shù)就是2.

        3、單項式的次數(shù):

        一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù).

        說明:

       、庞嬎銌雾検降拇螖(shù)時,應注意是所有字母的指數(shù)和,不要漏掉字母指數(shù)是1的.情況。如單項式2xyz的次數(shù)是字母z,y,x的指數(shù)和,即4+3+1=8,而不是7次,應注意字母z的指數(shù)是1而不是0;

       、茊雾検降闹笖(shù)只和字母的指數(shù)有關,與系數(shù)的指數(shù)無關。

       、菃雾検绞且粋單獨字母時,它的指數(shù)是1,如單項式m的指數(shù)是1,單項式是單獨的一個常數(shù)時,一般不討論它的次數(shù);

        4、在含有字母的式子中如果出現(xiàn)乘號,通常將乘號寫作“x ”或者省略不寫。

        5、在書寫單項式時,數(shù)字因數(shù)寫在字母因數(shù)的前面,數(shù)字因數(shù)是帶分數(shù)時轉化成假分數(shù).。

        初一數(shù)學知識點總結 6

        第一章整式的運算

        一、單項式、單項式的次數(shù):

        只含有數(shù)字與字母的積的代數(shù)式叫做單項式。單獨的一個數(shù)或一個字母也是單項式。一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。

        二、多項式

        1、多項式、多項式的次數(shù)、項

        幾個單項式的和叫做多項式。其中每個單項式叫做這個多項式的項。多項式中不含字母的項叫做常數(shù)項。多項式中次數(shù)最高的項的次數(shù),叫做這個多項式的次數(shù)。

        三、整式:單項式和多項式統(tǒng)稱為整式。

        四、整式的加減法:

        整式加減法的一般步驟:(1)去括號;(2)合并同類項。

        五、冪的運算性質:

        1、同底數(shù)冪的乘法:

        2、冪的乘方:

        3、積的乘方:

        4、同底數(shù)冪的除法:

        六、零指數(shù)冪和負整數(shù)指數(shù)冪:

        1、零指數(shù)冪:

        2、負整數(shù)指數(shù)冪:

        七、整式的乘除法:

        1、單項式乘以單項式:

        法則:單項式與單項式相乘,把它們的系數(shù)、相同字母的冪分別相乘,其余的字母連同它的指數(shù)不變,作為積的因式。

        2、單項式乘以多項式:

        法則:單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。

        3、多項式乘以多項式:

        多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。

        4、單項式除以單項式:

        單項式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)一起作為商的一個因式。

        5、多項式除以單項式:

        多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

        八、整式乘法公式:

        1、平方差公式:

        2、完全平方公式:

        第二章平行線與相交線

        一、余角和補角:

        1、余角:

        定義:如果兩個角的和是直角,那么稱這兩個角互為余角。性質:同角或等角的余角相等。2、補角:

        定義:如果兩個角的和是平角,那么稱這兩個角互為補角。

        性質:同角或等角的補角相等。

        二、對頂角:

        我們把兩條直線相交所構成的四個角中,有公共頂點且角的兩邊互為反向延長線的兩個角叫做對頂角。

        對頂角的性質:對頂角相等。

        三、同位角、內錯角、同旁內角:

        直線AB,CD與EF相交(或者說兩條直線AB,CD被第三條直線EF所截),構成八個角。其中∠1與∠5這兩個角分別在AB,CD的上方,并且在EF的同側,像這樣位置相同的一對角叫做同位角;∠3與∠5這兩個角都在AB,CD之間,并且在EF的異側,像這樣位置的兩個角叫做內錯角;∠3與∠6在直線AB,CD之間,并側在EF的同側,像這樣位置的兩個角叫做同旁內角。

        四、平行線的判定:

        1、兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。簡稱:同位角相等,兩直線平行。

        2、兩條直線被第三條直線所截,如果內錯角相等,那么兩直線平行。簡稱:內錯角相等,兩直線平行。

        3、兩條直線被第三條直線所截,如果同旁內角互補,那么兩直線平行。簡稱:同旁內角互補,兩直線平行。

        補充平行線的判定方法:

       。1)平行于同一條直線的兩直線平行。

       。2)在同一平面內,垂直于同一條直線的兩直線平行。(3)平行線的定義。

        五、平行線的性質:

       。1)兩直線平行,同位角相等。(2)兩直線平行,內錯角相等。(3)兩直線平行,同旁內角互補。

        六、尺規(guī)作圖:

        1、作一條線段等于已知線段。2、作一個角等于已知角。

        第三章生活中的數(shù)據(jù)

        一、科學記數(shù)法:

        一般地,一個絕對值較小的數(shù)可以表示成a10的形式,其中1a10,n是負整數(shù)。

        二、近似數(shù)和有效數(shù)字:

        1、近似數(shù):

        利用四舍五入法取一個數(shù)的近似數(shù)時,四舍五入到哪一位,就說這個近似數(shù)精確到哪一位。

        2、有效數(shù)字:對于一個近似數(shù),從左邊第一個不是0的數(shù)字起,到精確到的數(shù)位止,所有的數(shù)字都叫做這個近似數(shù)的有效數(shù)字。

        三、形象統(tǒng)計圖:

        第四章概率

        一、事件發(fā)生的可能性;

        人們通常用1(或100)來表示必然事件發(fā)生的可能性,用0來表示不可能事件發(fā)生的可能性。

        二、游戲是否公平:

        游戲對雙方公平是指雙方獲勝的可能性相同。三、摸到紅球的概率:1、概率的意義

        P(摸到紅球=

        摸到紅球可能出現(xiàn)的結果數(shù)

        摸出一球可能出現(xiàn)的結果數(shù)2、確定事件和不確定事件的概率:

       。1)必然事件發(fā)生的概率為1記作P(必然事件)=1(2)不可能事件發(fā)生的概率為0,P(不可能事件)=0(3)如果A為不確定事件,那么0

        (2)三角形按角分類:

        直角三角形(有一個角為直角的三角形)

        三角形銳角三角形(三個角都是銳角的三角形)斜三角形

        鈍角三角形(有一個角為鈍角的三角形)

        把邊和角聯(lián)系在一起,我們又有一種特殊的三角形:等腰直角三角形。它是兩條直角邊相等的直角三角形。

        7、三角形的三種重要線段:(1)三角形的角平分線:

        定義:在三角形中,一個內角的平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。

        性質:三角形的三條角平分線交于一點。交點在三角形的內部。(2)三角形的中線:

        定義:在三角形中,連接一個頂點和它對邊的中點的線段叫做三角形的中線。性質:三角形的三條中線交于一點,交點在三角形的內部。(3)三角形的高線:

        定義:從三角形一個頂點向它的對邊所在直線作垂線,頂點和垂足之間的線段叫做三角形的高線(簡稱三角形的高)。

        性質:三角形的三條高所在的直線交于一點。銳角三角形的三條高線的交點在它的內部;直角三角形的三條高線的交點是它的斜邊的中點;鈍角三角形的三條高所在的直線的交點在它的外部;

        8、三角形的面積:

        三角形的面積=

        1×底×高2二、全等圖形:

        定義:能夠完全重合的兩個圖形叫做全等圖形。性質:全等圖形的形狀和大小都相同。三、全等三角形

        1、全等三角形及有關概念:

        能夠完全重合的兩個三角形叫做全等三角形。兩個三角形全等時,互相重合的頂點叫做對應頂點,互相重合的邊叫做對應邊,互相重合的角叫做對應角。

        2、全等三角形的表示:

        全等用符號“≌”表示,讀作“全等于”。如△ABC≌△DEF,讀作“三角形ABC全等于三角形DEF”。注:記兩個全等三角形時,通常把表示對應頂點的字母寫在對應的位置上。3、全等三角形的性質:全等三角形的對應邊相等,對應角相等。4、三角形全等的`判定:

       。1)邊邊邊:有三邊對應相等的兩個三角形全等(可簡寫成“邊邊邊”或“SSS”)。

       。2)角邊角:兩角和它們的夾邊對應相等的兩個三角形全等(可簡寫成“角邊角”或“ASA”)(3)角角邊:兩角和其中一角的對邊對應相等的兩個三角形全等(可簡寫成“角角邊”或“AAS”)(4)邊角邊:兩邊和它們的夾角對應相等的兩個三角形全等(可簡寫成“邊角邊”或“SAS”)直角三角形全等的判定:

        對于特殊的直角三角形,判定它們全等時,還有HL定理(斜邊、直角邊定理):斜邊和一條直角邊對應相等的兩個直角三角形全等(可簡寫成“斜邊、直角邊”或“HL”)

        第六章變量之間的關系

        1、變量、自變量、因變量:2、函數(shù)的三種表示法:

        (1)關系式法(2)列表法

       。3)圖像法

        第五章生活中的軸對稱

        一、軸對稱

        1、軸對稱圖形:

        如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。

        2、軸對稱:

        對于兩個圖形,如果沿一條直線對折后,它們能夠完全重合,那么稱這兩個圖形成軸對稱,這條直線就是對稱軸。

        3、性質:

       。1)對應點所連的線段被對稱軸垂直平分

       。2)對應線段相等,對應角相等。

        二、角平分線的性質:

        角平分線上的點到這個角的兩邊的距離相等。

        三、線段的垂直平分線(簡稱中垂線):

        定義:垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線。性質:線段垂直平分線上的點到這條線段兩個端點的距離相等。

        四、等腰三角形

        1、等腰三角形:有兩條邊相等的三角形叫做等腰三角形。

        2、等腰三角形的性質:

       。1)等腰三角形的兩個底角相等

        (2)等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”),

        (3)等腰三角形是軸對稱圖形,等腰三角形頂角的平分線、底邊上的中線、底邊上的高它們所在的直線都是等腰三角形的對稱軸。

        3、等腰三角形的判定:

        (1)有兩條邊相等的三角形是等腰三角形。

       。2)如果一個三角形有兩個角相等,那么它們所對的邊也相等

        五、等邊三角形:

        1、等邊三角形:三邊都相等的三角形叫做等邊三角形。

        2、等邊三角形的性質:

       。1)具有等腰三角形的所有性質。

       。2)等邊三角形的各個角都相等,并且每個角都等于60°。

        3、等邊三角形的判定

       。1)三邊都相等的三角形是等邊三角形。

        (2)三個角都相等的三角形是等邊三角形

       。3)有一個角是60°的等腰三角形是等邊三角形。

        初一數(shù)學知識點總結 7

        1.同底數(shù)冪的乘法:am?an=am+n ,底數(shù)不變,指數(shù)相加。

        2.同底數(shù)冪的除法:am÷an=am-n ,底數(shù)不變,指數(shù)相減。

        3.冪的乘方與積的乘方:(am)n=amn ,底數(shù)不變,指數(shù)相乘; (ab)n=anbn ,積的乘方等于各因式乘方的積。

        4.零指數(shù)與負指數(shù)公式:

        (1)a0=1 (a≠0); a-n= ,(a≠0)。 注意:00,0-2無意義。

        (2)有了負指數(shù),可用科學記數(shù)法記錄小于1的數(shù),例如:0.0000201=2.01×10-5。

        5.(1)平方差公式:(a+b)(a-b)= a2-b2,兩個數(shù)的和與這兩個數(shù)的差的積等于這兩個數(shù)的平方差;

        (2)完全平方公式:

       、 (a+b)2=a2+2ab+b2, 兩個數(shù)和的平方,等于它們的平方和,加上它們的積的2倍;

       、 (a-b)2=a2-2ab+b2 , 兩個數(shù)差的平方,等于它們的平方和,減去它們的積的2倍;

        ※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc

        6.配方:

        (1)若二次三項式x2+px+q是完全平方式,則有關系式: ;

        ※ (2)二次三項式ax2+bx+c經過配方,總可以變?yōu)閍(x-h)2+k的形式。

        注意:當x=h時,可求出ax2+bx+c的最大(或最小)值k。

        ※(3)注意: 。

        7.單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);

        系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的`次數(shù)。

        8.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;

        多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù);

        注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個二次三項式。

        9.同類項:所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項。

        10.合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變。

        11.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號。

        注意:多項式計算的最后結果一般應該進行升冪(或降冪)排列。

        平面幾何部分

        1、補角重要性質:同角或等角的補角相等.

        余角重要性質:同角或等角的余角相等.

        2、①直線公理:過兩點有且只有一條直線.

        線段公理:兩點之間線段最短.

       、谟嘘P垂線的定理:(1)過一點有且只有一條直線與已知直線垂直;

        (2)直線外一點與直線上各點連結的所有線段中,垂線段最短.

        比例尺:比例尺1:m中,1表示圖上距離,m表示實際距離,若圖上1厘米,表示實際距離m厘米.

        3、三角形的內角和等于180

        三角形的一個外角等于與它不相鄰的兩個內角的和

        三角形的一個外角大于與它不相鄰的任何一個內角

        4、n邊形的對角線公式:

        各個角都相等,各條邊都相等的多邊形叫做正多邊形

        5、n邊形的內角和公式:180(n-2); 多邊形的外角和等于360

        6、判斷三條線段能否組成三角形:

       、賏+b>c(a b為最短的兩條線段)②a-b

        7、第三邊取值范圍:

        a-b< c

        8、對應周長取值范圍:

        若兩邊分別為a,b則周長的取值范圍是 2a

        如兩邊分別為5和7則周長的取值范圍是 14

        9、相關命題:

        (1) 三角形中最多有1個直角或鈍角,最多有3個銳角,最少有2個銳角。

        (2) 銳角三角形中最大的銳角的取值范圍是60≤X<90 。最大銳角不小于60度。

        (3)任意一個三角形兩角平分線的夾角=90+第三角的一半。

        (4) 鈍角三角形有兩條高在外部。

        (5) 全等圖形的大小(面積、周長)、形狀都相同。

        (6) 面積相等的兩個三角形不一定是全等圖形。

        (7) 三角形具有穩(wěn)定性。

        (8) 角平分線到角的兩邊距離相等。

        (9)有一個角是60的等腰三角形是等邊三角形。

      【初一數(shù)學知識點總結】相關文章:

      人教版數(shù)學初一知識點總結04-24

      初一的數(shù)學知識點總結04-24

      初一數(shù)學下知識點總結12-06

      初一數(shù)學全部知識點總結04-22

      初一數(shù)學下冊知識點總結11-22

      初一數(shù)學基本知識點總結08-11

      初一數(shù)學上冊知識點總結11-22

      人教版初一數(shù)學知識點總結04-25

      初一數(shù)學下冊知識點總結歸納08-13