在线视频国产欧美另类,偷拍亚洲一区一区二区三区,日韩中文字幕在线视频,日本精品久久久久中文字幕

<small id="qpqhz"></small>
  • <legend id="qpqhz"></legend>

      <td id="qpqhz"><strong id="qpqhz"></strong></td>
      <small id="qpqhz"><menuitem id="qpqhz"></menuitem></small>
    1. 高三數(shù)學(xué)知識點(diǎn)歸納

      時(shí)間:2022-04-28 08:41:02 總結(jié) 我要投稿

      高三數(shù)學(xué)知識點(diǎn)匯總歸納

        在日復(fù)一日的學(xué)習(xí)中,大家都背過各種知識點(diǎn)吧?知識點(diǎn)是傳遞信息的基本單位,知識點(diǎn)對提高學(xué)習(xí)導(dǎo)航具有重要的作用。那么,都有哪些知識點(diǎn)呢?以下是小編為大家整理的高三數(shù)學(xué)知識點(diǎn)匯總歸納,僅供參考,希望能夠幫助到大家。

      高三數(shù)學(xué)知識點(diǎn)匯總歸納

        高三數(shù)學(xué)知識點(diǎn)歸納 篇1

        高三上冊數(shù)學(xué)知識點(diǎn)整理

        1、函數(shù)零點(diǎn)的概念:對于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

        2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:

        方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).

        3、函數(shù)零點(diǎn)的求法:

        求函數(shù)的零點(diǎn):

        (1)(代數(shù)法)求方程的實(shí)數(shù)根;

        (2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).

        4、二次函數(shù)的零點(diǎn):

        二次函數(shù).

        1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

        2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

        3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn).

        人教版高三數(shù)學(xué)知識點(diǎn)總結(jié)

        1.定義:

        用符號〉,=,〈號連接的式子叫不等式。

        2.性質(zhì):

       、俨坏仁降膬蛇叾技由匣驕p去同一個(gè)整式,不等號方向不變。

       、诓坏仁降膬蛇叾汲艘曰蛘叱砸粋(gè)正數(shù),不等號方向不變。

       、鄄坏仁降膬蛇叾汲艘曰虺酝粋(gè)負(fù)數(shù),不等號方向相反。

        3.分類:

       、僖辉淮尾坏仁剑鹤笥覂蛇叾际钦剑缓幸粋(gè)未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫一元一次不等式。

       、谝辉淮尾坏仁浇M:

        a.關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。

        b.一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。

        4.考點(diǎn):

        ①解一元一次不等式(組)

       、诟鶕(jù)具體問題中的數(shù)量關(guān)系列不等式(組)并解決簡單實(shí)際問題

        ③用數(shù)軸表示一元一次不等式(組)的解集

        高三數(shù)學(xué)知識點(diǎn)歸納 篇2

        1、圓柱體:

        表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

        2、圓錐體:

        表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

        3、正方體

        a-邊長,S=6a2,V=a3

        4、長方體

        a-長,b-寬,c-高S=2(ab+ac+bc)V=abc

        5、棱柱

        S-底面積h-高V=Sh

        6、棱錐

        S-底面積h-高V=Sh/3

        7、棱臺

        S1和S2-上、下底面積h-高V=h[S1+S2+(S1S2)^1/2]/3

        8、擬柱體

        S1-上底面積,S2-下底面積,S0-中截面積

        h-高,V=h(S1+S2+4S0)/6

        9、圓柱

        r-底半徑,h-高,C—底面周長

        S底—底面積,S側(cè)—側(cè)面積,S表—表面積C=2πr

        S底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h

        10、空心圓柱

        R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)

        11、直圓錐

        r-底半徑h-高V=πr^2h/3

        12、圓臺

        r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/3

        13、球

        r-半徑d-直徑V=4/3πr^3=πd^3/6

        14、球缺

        h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

        高三數(shù)學(xué)知識點(diǎn)歸納 篇3

        復(fù)數(shù)的概念:

        形如a+bi(a,b∈R)的數(shù)叫復(fù)數(shù),其中i叫做虛數(shù)單位。全體復(fù)數(shù)所成的集合叫做復(fù)數(shù)集,用字母C表示。

        復(fù)數(shù)的表示:

        復(fù)數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復(fù)數(shù)的代數(shù)形式,其中a叫復(fù)數(shù)的實(shí)部,b叫復(fù)數(shù)的虛部。

        復(fù)數(shù)的幾何意義:

        (1)復(fù)平面、實(shí)軸、虛軸:

        點(diǎn)Z的橫坐標(biāo)是a,縱坐標(biāo)是b,復(fù)數(shù)z=a+bi(a、b∈R)可用點(diǎn)Z(a,b)表示,這個(gè)建立了直角坐標(biāo)系來表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實(shí)軸,y軸叫做虛軸。顯然,實(shí)軸上的點(diǎn)都表示實(shí)數(shù),除原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數(shù)

        (2)復(fù)數(shù)的幾何意義:復(fù)數(shù)集C和復(fù)平面內(nèi)所有的點(diǎn)所成的集合是一一對應(yīng)關(guān)系,即

        這是因?yàn)椋恳粋(gè)復(fù)數(shù)有復(fù)平面內(nèi)惟一的一個(gè)點(diǎn)和它對應(yīng);反過來,復(fù)平面內(nèi)的每一個(gè)點(diǎn),有惟一的一個(gè)復(fù)數(shù)和它對應(yīng)。

        這就是復(fù)數(shù)的一種幾何意義,也就是復(fù)數(shù)的另一種表示方法,即幾何表示方法。

        復(fù)數(shù)的模:

        復(fù)數(shù)z=a+bi(a、b∈R)在復(fù)平面上對應(yīng)的點(diǎn)Z(a,b)到原點(diǎn)的距離叫復(fù)數(shù)的模,記為|Z|,即|Z|=

        虛數(shù)單位i:

        (1)它的平方等于-1,即i2=-1;

        (2)實(shí)數(shù)可以與它進(jìn)行四則運(yùn)算,進(jìn)行四則運(yùn)算時(shí),原有加、乘運(yùn)算律仍然成立

        (3)i與-1的關(guān)系:i就是-1的一個(gè)平方根,即方程x2=-1的一個(gè)根,方程x2=-1的另一個(gè)根是-i。

        (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

        復(fù)數(shù)模的性質(zhì):

        復(fù)數(shù)與實(shí)數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:

        對于復(fù)數(shù)a+bi(a、b∈R),當(dāng)且僅當(dāng)b=0時(shí),復(fù)數(shù)a+bi(a、b∈R)是實(shí)數(shù)a;當(dāng)b≠0時(shí),復(fù)數(shù)z=a+bi叫做虛數(shù);當(dāng)a=0且b≠0時(shí),z=bi叫做純虛數(shù);當(dāng)且僅當(dāng)a=b=0時(shí),z就是實(shí)數(shù)0。

        高三數(shù)學(xué)知識點(diǎn)歸納 篇4

        1.不等式的定義

        在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號連接兩個(gè)數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號的式子,叫做不等式.

        2.比較兩個(gè)實(shí)數(shù)的大小

        兩個(gè)實(shí)數(shù)的大小是用實(shí)數(shù)的運(yùn)算性質(zhì)來定義的,

        有a-b>0?;a-b=0?;a-b<0?.

        另外,若b>0,則有>1?;=1?;<1?.

        概括為:作差法,作商法,中間量法等.

        3.不等式的性質(zhì)

        (1)對稱性:a>b?;

        (2)傳遞性:a>b,b>c?;

        (3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

        (4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

        (5)可乘方:a>b>0?(n∈N,n≥2);

        (6)可開方:a>b>0?(n∈N,n≥2).

        復(fù)習(xí)指導(dǎo)

        1.“一個(gè)技巧”作差法變形的技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.

        2.“一種方法”待定系數(shù)法:求代數(shù)式的范圍時(shí),先用已知的代數(shù)式表示目標(biāo)式,再利用多項(xiàng)式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標(biāo)式的范圍.

        3.“兩條常用性質(zhì)”

        (1)倒數(shù)性質(zhì):①a>b,ab>0?<;②a<0

       、踑>b>0,0;④0

        (2)若a>b>0,m>0,則

        ①真分?jǐn)?shù)的性質(zhì):<;>(b-m>0);

        高三數(shù)學(xué)知識點(diǎn)歸納 篇5

        不等式的解集:

       、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。

       、谝粋(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。

       、矍蟛坏仁浇饧倪^程叫做解不等式。

        不等式的判定:

       、俪R姷牟坏忍栍小>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

       、谠诓坏仁健癮>b”或“a

        ③不等號的開口所對的數(shù)較大,不等號的尖頭所對的數(shù)較小;

       、茉诹胁坏仁綍r(shí),一定要注意不等式關(guān)系的關(guān)鍵字,如:正數(shù)、非負(fù)數(shù)、不大于、小于等等。

        高三數(shù)學(xué)知識點(diǎn)歸納 篇6

        等式的性質(zhì):

       、俨坏仁降男再|(zhì)可分為不等式基本性質(zhì)和不等式運(yùn)算性質(zhì)兩部分。

        不等式基本性質(zhì)有:

        (1)a>bb

        (2)a>b,b>ca>c(傳遞性)

        (3)a>ba+c>b+c(c∈R)

        (4)c>0時(shí),a>bac>bc

        c<0時(shí),a>bac

        運(yùn)算性質(zhì)有:

        (1)a>b,c>da+c>b+d。

        (2)a>b>0,c>d>0ac>bd。

        (3)a>b>0an>bn(n∈N,n>1)。

        (4)a>b>0>(n∈N,n>1)。

        應(yīng)注意,上述性質(zhì)中,條件與結(jié)論的邏輯關(guān)系有兩種:“”和“”即推出關(guān)系和等價(jià)關(guān)系。一般地,證明不等式就是從條件出發(fā)施行一系列的推出變換。解不等式就是施行一系列的等價(jià)變換。因此,要正確理解和應(yīng)用不等式性質(zhì)。

       、陉P(guān)于不等式的性質(zhì)的考察,主要有以下三類問題:

        (1)根據(jù)給定的不等式條件,利用不等式的性質(zhì),判斷不等式能否成立。

        (2)利用不等式的性質(zhì)及實(shí)數(shù)的性質(zhì),函數(shù)性質(zhì),判斷實(shí)數(shù)值的大小。

        (3)利用不等式的性質(zhì),判斷不等式變換中條件與結(jié)論間的充分或必要關(guān)系。

        高中數(shù)學(xué)集合復(fù)習(xí)知識點(diǎn)

        任一A,B,記做AB

        AB,BA,A=B

        AB={|A|,且|B|}

        AB={|A|,或|B|}

        Card(AB)=card(A)+card(B)-card(AB)

        (1)命題

        原命題若p則q

        逆命題若q則p

        否命題若p則q

        逆否命題若q,則p

        (2)AB,A是B成立的充分條件

        BA,A是B成立的必要條件

        AB,A是B成立的充要條件

        1.集合元素具有①確定性;②互異性;③無序性

        2.集合表示方法①列舉法;②描述法;③韋恩圖;④數(shù)軸法

        (3)集合的運(yùn)算

       、貯∩(B∪C)=(A∩B)∪(A∩C)

       、贑u(A∩B)=CuA∪CuB

        Cu(A∪B)=CuA∩CuB

        (4)集合的性質(zhì)

        n元集合的字集數(shù):2n

        真子集數(shù):2n-1;

        非空真子集數(shù):2n-2

        高中數(shù)學(xué)集合知識點(diǎn)歸納

        1、集合的概念

        集合是數(shù)學(xué)中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對象集合在一起就稱為一個(gè)集合。組成集合的對象叫元素,集合通常用大寫字母A、B、C、…來表示。元素常用小寫字母a、b、c、…來表示。

        集合是一個(gè)確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個(gè)集合。

        2、元素與集合的關(guān)系元素與集合的`關(guān)系有屬于和不屬于兩種:

        元素a屬于集合A,記做a∈A;元素a不屬于集合A,記做a?A。

        3、集合中元素的特性

        (1)確定性:設(shè)A是一個(gè)給定的集合,_是某一具體對象,則_或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。

        (2)互異性:“集合張的元素必須是互異的”,就是說“對于一個(gè)給定的集合,它的任何兩個(gè)元素都是不同的”。

        (3)無序性:集合與其中元素的排列次序無關(guān),如集合{a,b,c}與集合{c,b,a}是同一個(gè)集合。

        4、集合的分類

        集合科根據(jù)他含有的元素個(gè)數(shù)的多少分為兩類:

        有限集:含有有限個(gè)元素的集合。如“方程3_+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個(gè)數(shù)是可數(shù)的,因此兩個(gè)集合是有限集。

        無限集:含有無限個(gè)元素的集合,如“到平面上兩個(gè)定點(diǎn)的距離相等于所有點(diǎn)”“所有的三角形”,組成上述集合的元素不可數(shù)的,因此他們是無限集。

        特別的,我們把不含有任何元素的集合叫做空集,記錯(cuò)F,如{|R|+1=0}。

        5、特定的集合的表示

        為了書寫方便,我們規(guī)定常見的數(shù)集用特定的字母表示,下面是幾種常見的數(shù)集表示方法,請牢記。

        (1)全體非負(fù)整數(shù)的集合通常簡稱非負(fù)整數(shù)集(或自然數(shù)集),記做N。

        (2)非負(fù)整數(shù)集內(nèi)排出0的集合,也稱正整數(shù)集,記做N_或N+。

        (3)全體整數(shù)的集合通常簡稱為整數(shù)集Z。

        (4)全體有理數(shù)的集合通常簡稱為有理數(shù)集,記做Q。

        (5)全體實(shí)數(shù)的集合通常簡稱為實(shí)數(shù)集,記做R。

      【高三數(shù)學(xué)知識點(diǎn)匯總歸納】相關(guān)文章:

      高三數(shù)學(xué)學(xué)習(xí)方法整理歸納12-29

      《乘法》知識點(diǎn)歸納04-27

      《觀潮》知識點(diǎn)歸納09-01

      高三語文外國文學(xué)常識知識點(diǎn)復(fù)習(xí)歸納05-16

      采薇知識點(diǎn)歸納09-02

      《觀滄海》知識點(diǎn)歸納11-07

      高三數(shù)學(xué)重點(diǎn)知識點(diǎn)總結(jié)04-25

      語文《背影》知識點(diǎn)總結(jié)歸納12-07

      語文《木蘭詩》知識點(diǎn)歸納03-07

      蜀道難知識點(diǎn)歸納11-12