在线视频国产欧美另类,偷拍亚洲一区一区二区三区,日韩中文字幕在线视频,日本精品久久久久中文字幕

<small id="qpqhz"></small>
  • <legend id="qpqhz"></legend>

      <td id="qpqhz"><strong id="qpqhz"></strong></td>
      <small id="qpqhz"><menuitem id="qpqhz"></menuitem></small>
    1. 高一數(shù)學的知識點總結(jié)

      時間:2025-01-15 16:39:51 曉映 總結(jié) 我要投稿

      高一數(shù)學的知識點總結(jié)

        總結(jié)是把一定階段內(nèi)的有關情況分析研究,做出有指導性結(jié)論的書面材料,它能幫我們理順知識結(jié)構(gòu),突出重點,突破難點,因此好好準備一份總結(jié)吧?偨Y(jié)怎么寫才不會流于形式呢?以下是小編精心整理的高一數(shù)學的知識點總結(jié),希望能夠幫助到大家。

      高一數(shù)學的知識點總結(jié)

        高一數(shù)學的知識點總結(jié) 1

        一、函數(shù)的概念與表示

        1、映射

        (1)映射:設A、B是兩個集合,如果按照某種映射法則f,對于集合A中的任一個元素,在集合B中都有唯一的元素和它對應,則這樣的對應(包括集合A、B以及A到B的對應法則f)叫做集合A到集合B的映射,記作f:A→B。

        注意點:(1)對映射定義的理解。(2)判斷一個對應是映射的方法。一對多不是映射,多對一是映射

        2、函數(shù)

        構(gòu)成函數(shù)概念的三要素

       、俣x域②對應法則③值域

        兩個函數(shù)是同一個函數(shù)的條件:三要素有兩個相同

        二、函數(shù)的解析式與定義域

        1、求函數(shù)定義域的主要依據(jù):

        (1)分式的分母不為零;

        (2)偶次方根的被開方數(shù)不小于零,零取零次方?jīng)]有意義;

        (3)對數(shù)函數(shù)的真數(shù)必須大于零;

        (4)指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

        三、函數(shù)的值域

        1求函數(shù)值域的方法

       、僦苯臃ǎ簭淖宰兞縳的范圍出發(fā),推出y=f(x)的取值范圍,適合于簡單的復合函數(shù);

       、趽Q元法:利用換元法將函數(shù)轉(zhuǎn)化為二次函數(shù)求值域,適合根式內(nèi)外皆為一次式;

        ③判別式法:運用方程思想,依據(jù)二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;

        ④分離常數(shù):適合分子分母皆為一次式(x有范圍限制時要畫圖);

       、輪握{(diào)性法:利用函數(shù)的單調(diào)性求值域;

       、迗D象法:二次函數(shù)必畫草圖求其值域;

       、呃脤μ柡瘮(shù)

       、鄮缀我饬x法:由數(shù)形結(jié)合,轉(zhuǎn)化距離等求值域。主要是含絕對值函數(shù)

        四.函數(shù)的奇偶性

        1.定義:設y=f(x),x∈A,如果對于任意∈A,都有,則稱y=f(x)為偶函數(shù)。

        如果對于任意∈A,都有,則稱y=f(x)為奇

        函數(shù)。

        2.性質(zhì):

       、賧=f(x)是偶函數(shù)y=f(x)的`圖象關于軸對稱,y=f(x)是奇函數(shù)y=f(x)的圖象關于原點對稱,

        ②若函數(shù)f(x)的定義域關于原點對稱,則f(0)=0

       、燮妗榔=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數(shù)的定義域D1,D2,D1∩D2要關于原點對稱]

        3.奇偶性的判斷

        ①看定義域是否關于原點對稱②看f(x)與f(-x)的關系

        五、函數(shù)的單調(diào)性

        1、函數(shù)單調(diào)性的定義:

        2設是定義在M上的函數(shù),若f(x)與g(x)的單調(diào)性相反,則在M上是減函數(shù);若f(x)與g(x)的單調(diào)性相同,則在M上是增函數(shù)。

        高一數(shù)學的知識點總結(jié) 2

        本節(jié)內(nèi)容主要是空間點、直線、平面之間的位置關系,在認識過程中,可以進一步提高同學們的空間想象能力,發(fā)展推理能力.通過對實際模型的認識,學會將文字語言轉(zhuǎn)化為圖形語言和符號語言,以具體的長方體中的點、線、面之間的關系作為載體,使同學們在直觀感知的基礎上,認識空間中點、線、面之間的位置關系,點、線、面的位置關系是立體幾何的主要研究對象,同時也是空間圖形最基本的幾何元素.

        重難點知識歸納

        1、平面

        (1)平面概念的理解

        直觀的理解:桌面、黑板面、平靜的水面等等都給人以平面的直觀的印象,但它們都不是平面,而僅僅是平面的一部分.

        抽象的理解:平面是平的,平面是無限延展的,平面沒有厚薄.

        (2)平面的表示法

       、賵D形表示法:通常用平行四邊形來表示平面,有時根據(jù)實際需要,也用其他的平面圖形來表示平面.

       、谧帜副硎荆撼S玫认ED字母表示平面.

        (3)涉及本部分內(nèi)容的符號表示有:

       、冱cA在直線l內(nèi),記作; ②點A不在直線l內(nèi),記作;

        ③點A在平面內(nèi),記作; ④點A不在平面內(nèi),記作;

       、葜本l在平面內(nèi),記作; ⑥直線l不在平面內(nèi),記作;

        注意:符號的使用與集合中這四個符號的使用的區(qū)別與聯(lián)系.

        (4)平面的基本性質(zhì)

        公理1:如果一條直線的兩個點在一個平面內(nèi),那么這條直線上的所有點都在這個平面內(nèi).

        符號表示為:.

        注意:如果直線上所有的點都在一個平面內(nèi),我們也說這條直線在這個平面內(nèi),或者稱平面經(jīng)過這條直線.

        公理2:過不在一條直線上的三點,有且只有一個平面.

        符號表示為:直線AB存在唯一的平面,使得.

        注意:“有且只有”的含義是:“有”表示存在,“只有”表示唯一,不能用“只有”來代替.此公理又可表示為:不共線的三點確定一個平面.

        公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線.

        符號表示為:.

        注意:兩個平面有一條公共直線,我們說這兩個平面相交,這條公共直線就叫作兩個平面的交線.若平面、平面相交于直線l,記作.

        公理的推論:

        推論1:經(jīng)過一條直線和直線外的一點有且只有一個平面.

        推論2:經(jīng)過兩條相交直線有且只有一個平面.

        推論3:經(jīng)過兩條平行直線有且只有一個平面.

        2.空間直線

        (1)空間兩條直線的位置關系

       、傧嘟恢本:有且僅有一個公共點,可表示為;

       、谄叫兄本:在同一個平面內(nèi),沒有公共點,可表示為a//b;

       、郛惷嬷本:不同在任何一個平面內(nèi),沒有公共點.

        (2)平行直線

        公理4:平行于同一條直線的兩條直線互相平行.

        符號表示為:設a、b、c是三條直線,.

        定理:如果一個角的兩邊和另一個角的兩邊分別平行并且方向相同,那么這兩個角相等.

        (3)兩條異面直線所成的角

        注意:

       、賰蓷l異面直線a,b所成的角的'范圍是(0°,90°].

       、趦蓷l異面直線所成的角與點O的選擇位置無關,這可由前面所講過的“等角定理”直接得出.

       、塾蓛蓷l異面直線所成的角的定義可得出異面直線所成角的一般方法:

        (i)在空間任取一點,這個點通常是線段的中點或端點.

        (ii)分別作兩條異面直線的平行線,這個過程通常采用平移的方法來實現(xiàn).

        (iii)指出哪一個角為兩條異面直線所成的角,這時我們要注意兩條異面直線所成的角的范圍.

        3.空間直線與平面

        直線與平面位置關系有且只有三種:

        (1)直線在平面內(nèi):有無數(shù)個公共點;

        (2)直線與平面相交:有且只有一個公共點;

        (3)直線與平面平行:沒有公共點.

        4.平面與平面

        兩個平面之間的位置關系有且只有以下兩種:

        (1)兩個平面平行:沒有公共點;

        (2)兩個平面相交:有一條公共直線.

        高一數(shù)學的知識點總結(jié) 3

        一、集合有關概念

        1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

        2、集合的中元素的三個特性:

        1.元素的確定性;2.元素的互異性;3.元素的無序性

        說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

        (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

        (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

        (4)集合元素的三個特性使集合本身具有了確定性和整體性。

        3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

        1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

        2.集合的表示方法:列舉法與描述法。

        二、集合間的基本關系

        1.“包含”關系—子集

        注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

        反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

        2.“相等”關系(5≥5,且5≤5,則5=5)

        實例:設A={x|x2-1=0}B={-1,1}“元素相同”

        結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

       、偃魏我粋集合是它本身的子集。AíA

       、谡孀蛹:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

       、廴绻鸄íB,BíC,那么AíC

       、苋绻鸄íB同時BíA那么A=B

        3.不含任何元素的集合叫做空集,記為Φ

        規(guī)定:空集是任何集合的.子集,空集是任何非空集合的真子集。

        三、集合的運算

        1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

        記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

        2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

        3、交集與并集的性質(zhì):A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.

        高一數(shù)學的知識點總結(jié) 4

        函數(shù)圖象知識歸納

        (1)定義:在平面直角坐標系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的函數(shù)C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標的點(x,y),均在C上.

        (2)畫法

        A、描點法:

        B、圖象變換法

        常用變換方法有三種

        1)平移變換

        2)伸縮變換

        3)對稱變換

        4.高中數(shù)學函數(shù)區(qū)間的概念

        (1)函數(shù)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

        (2)無窮區(qū)間

        5.映射

        一般地,設A、B是兩個非空的函數(shù),如果按某一個確定的對應法則f,使對于函數(shù)A中的任意一個元素x,在函數(shù)B中都有確定的元素y與之對應,那么就稱對應f:AB為從函數(shù)A到函數(shù)B的一個映射。記作“f(對應關系):A(原象)B(象)”

        對于映射f:A→B來說,則應滿足:

        (1)函數(shù)A中的每一個元素,在函數(shù)B中都有象,并且象是的;

        (2)函數(shù)A中不同的元素,在函數(shù)B中對應的象可以是同一個;

        (3)不要求函數(shù)B中的每一個元素在函數(shù)A中都有原象。

        6.高中數(shù)學函數(shù)之分段函數(shù)

        (1)在定義域的`不同部分上有不同的解析表達式的函數(shù)。

        (2)各部分的自變量的取值情況.

        (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

        補充:復合函數(shù)

        如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復合函數(shù)。

        高一數(shù)學的知識點總結(jié) 5

        知識點1

        一、集合有關概念

        1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

        2、集合的中元素的三個特性:

        1、元素的確定性;

        2、元素的互異性;

        3、元素的無序性

        說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

       。2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

       。3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

       。4)集合元素的三個特性使集合本身具有了確定性和整體性。

        3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

        1、用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

        2、集合的表示方法:列舉法與描述法。

        注意。撼S脭(shù)集及其記法:

        非負整數(shù)集(即自然數(shù)集)記作:N

        正整數(shù)集N或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R

        關于“屬于”的概念

        集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A

        列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。

        描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。

       、僬Z言描述法:例:{不是直角三角形的三角形}

       、跀(shù)學式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

        4、集合的分類:

        1、有限集含有有限個元素的集合

        2、無限集含有無限個元素的集合

        3、空集不含任何元素的集合例:{x|x2=—5}

        知識點2

        I、定義與定義表達式

        一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c

        (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大、)

        則稱y為x的二次函數(shù)。

        二次函數(shù)表達式的右邊通常為二次三項式。

        II、二次函數(shù)的三種表達式

        一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

        頂點式:y=a(x—h)^2+k[拋物線的頂點P(h,k)]

        交點式:y=a(x—x?)(x—x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]

        注:在3種形式的互相轉(zhuǎn)化中,有如下關系:

        h=—b/2ak=(4ac—b^2)/4ax?,x?=(—b±√b^2—4ac)/2a

        III、二次函數(shù)的圖像

        在平面直角坐標系中作出二次函數(shù)y=x^2的'圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

        IV、拋物線的性質(zhì)

        1、拋物線是軸對稱圖形。對稱軸為直線x=—b/2a。對稱軸與拋物線的交點為拋物線的頂點P。

        特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

        2、拋物線有一個頂點P,坐標為

        P(—b/2a,(4ac—b^2)/4a)

        當—b/2a=0時,P在y軸上;當Δ=b^2—4ac=0時,P在x軸上。

        3、二次項系數(shù)a決定拋物線的開口方向和大小。

        當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

        |a|越大,則拋物線的開口越小。

        知識點3

        1、拋物線是軸對稱圖形。對稱軸為直線

        x=—b/2a。

        對稱軸與拋物線的交點為拋物線的頂點P。

        特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

        2、拋物線有一個頂點P,坐標為

        P(—b/2a,(4ac—b’2)/4a)

        當—b/2a=0時,P在y軸上;當Δ=b’2—4ac=0時,P在x軸上。

        3、二次項系數(shù)a決定拋物線的開口方向和大小。

        當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

        |a|越大,則拋物線的開口越小。

        4、一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

        當a與b同號時(即ab>0),對稱軸在y軸左;

        當a與b異號時(即ab<0),對稱軸在y軸右。

        5、常數(shù)項c決定拋物線與y軸交點。

        拋物線與y軸交于(0,c)

        6、拋物線與x軸交點個數(shù)

        Δ=b’2—4ac>0時,拋物線與x軸有2個交點。

        Δ=b’2—4ac=0時,拋物線與x軸有1個交點。

        Δ=b’2—4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=—b±√b’2—4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

        知識點4

        對數(shù)函數(shù)

        對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。

        右圖給出對于不同大小a所表示的函數(shù)圖形:

        可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關于直線y=x的對稱圖形,因為它們互為反函數(shù)。

       。1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。

       。2)對數(shù)函數(shù)的值域為全部實數(shù)集合。

       。3)函數(shù)總是通過(1,0)這點。

        (4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。

        (5)顯然對數(shù)函數(shù)。

        知識點5

        方程的根與函數(shù)的零點

        1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

        2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:方程有實數(shù)根,函數(shù)的圖象與坐標軸有交點,函數(shù)有零點。

        3、函數(shù)零點的求法:

        (1)(代數(shù)法)求方程的實數(shù)根;

       。2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點。

        4、二次函數(shù)的零點:

       。1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點。

        (2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點。

       。3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點。

        高一數(shù)學的知識點總結(jié) 6

        1、高一數(shù)學知識點總結(jié):集合一、集合有關概念

        1.集合的含義

        2.集合的中元素的三個特性:

        (1)元素的確定性如:世界上最高的山

        (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

        (3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

        3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

        (1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

        (2)集合的表示方法:列舉法與描述法。

        注意:常用數(shù)集及其記法:

        非負整數(shù)集(即自然數(shù)集)記作:N

        正整數(shù)集N或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R

        1)列舉法:{a,b,c……}

        2)描述法:將集合中的元素的公共屬性描述出來,寫在大

        括號內(nèi)表示集合的方法。{x∈R|x-3>2},{x|x-3>2}

        3)語言描述法:例:{不是直角三角形的三角形}

        4)Venn圖:

        4、集合的分類:

        (1)有限集含有有限個元素的集合

        (2)無限集含有無限個元素的集合

        (3)空集不含任何元素的集合例:{x|x2=-5}

        2、高一數(shù)學知識點總結(jié):集合間的基本關系

        1.“包含”關系—子集

        注意:A?B有兩種可能(1)A是B的一部分;(2)A與B是同一集合。

        反之:集合A不包含于集合B,或集合B不包含集合A,記作A?/B或B?/A

        2.“相等”關系:A=B(5≥5,且5≤5,則5=5)

        實例:設A={x|x2

        -1=0}B={-1,1}“元素相同則兩集合相等”即:①任何一個集合是它本身的子集。A?A

       、谡孀蛹:如果A?B,且A≠B那就說集合A是集合B的真子集,記作AB(或BA)

       、廴绻鸄?B,B?C,那么A?C

       、苋绻鸄?B同時B?A那么A=B

        3.不含任何元素的集合叫做空集,記為Φ

        規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

        有n個元素的集合,含有2n個子集,2n-1個真子集,一般我們把不含任何元素的`集合叫做空集。

        3、高一數(shù)學知識點總結(jié):集合的分類

        (1)按元素屬性分類,如點集,數(shù)集。(2)按元素的個數(shù)多少,分為有/無限集

        關于集合的概念:

        (1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構(gòu)成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。

        (2)互異性:對于一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。

        (3)無序性:判斷一些對象時候構(gòu)成集合,關鍵在于看這些對象是否有明確的標準。

        集合可以根據(jù)它含有的元素的個數(shù)分為兩類:

        含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。

        非負整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N;

        在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N;

        整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z;

        有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q;(有理數(shù)是整數(shù)和分數(shù)的統(tǒng)稱,一切有理數(shù)都可以化成分數(shù)的形式。)

        實數(shù)全體構(gòu)成的集合,叫做實數(shù)集,記作R。(包括有理數(shù)和無理數(shù)。其中無理數(shù)就是無限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分數(shù)。數(shù)學上,實數(shù)直觀地定義為和數(shù)軸上的點一一對應的數(shù)。)

        1.列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{}”內(nèi)表示這個集合,例如,由兩個元素0,1構(gòu)成的集合可表示為{0,1}.

        有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。

        例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}.

        無限集有時也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}.

        2.描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來描述。

        例如:正偶數(shù)構(gòu)成的集合,它的每一個元素都具有性質(zhì):“能被2整除,且大于0”

        而這個集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為

        {x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},

        大括號內(nèi)豎線左邊的X表示這個集合的任意一個元素,元素X從實數(shù)集合中取值,在豎線右邊寫出只有集合內(nèi)的元素x才具有的性質(zhì)。

        一般地,如果在集合I中,屬于集合A的任意一個元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}

        它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡稱描述法。

        例如:集合A={x∈R│x2-1=0}的特征是X2-1=0

        高一數(shù)學的知識點總結(jié) 7

        1.函數(shù)的概念:設A、B是非空的數(shù)集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.

        注意:2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個式子有意義的實數(shù)的集合;3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.

        定義域補充

        能使函數(shù)式有意義的實數(shù)x的.集合稱為函數(shù)的定義域,求函數(shù)的定義域時列不等式組的主要依據(jù)是:(1)分式的分母不等于零;(2)偶次方根的被開方數(shù)不小于零;(3)對數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.(5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零(6)實際問題中的函數(shù)的定義域還要保證實際問題有意義.

        構(gòu)成函數(shù)的三要素:定義域、對應關系和值域

        再注意:(1)構(gòu)成函數(shù)三個要素是定義域、對應關系和值域.由于值域是由定義域和對應關系決定的,所以,如果兩個函數(shù)的定義域和對應關系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))(2)兩個函數(shù)相等當且僅當它們的定義域和對應關系完全一致,而與表示自變量和函數(shù)值的字母無關。相同函數(shù)的判斷方法:①表達式相同;②定義域一致(兩點必須同時具備)

        值域補充

        (1)、函數(shù)的值域取決于定義域和對應法則,不論采取什么方法求函數(shù)的值域都應先考慮其定義域.(2).應熟悉掌握一次函數(shù)、二次函數(shù)、指數(shù)、對數(shù)函數(shù)及各三角函數(shù)的值域,它是求解復雜函數(shù)值域的基礎。

        3.函數(shù)圖象知識歸納

        (1)定義:在平面直角坐標系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.

        C上每一點的坐標(x,y)均滿足函數(shù)關系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標的點(x,y),均在C上.即記為C={P(x,y)|y=f(x),x∈A}

        圖象C一般的是一條光滑的連續(xù)曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個交點的若干條曲線或離散點組成。

        (2)畫法

        A、描點法:根據(jù)函數(shù)解析式和定義域,求出x,y的一些對應值并列表,以(x,y)為坐標在坐標系內(nèi)描出相應的點P(x,y),最后用平滑的曲線將這些點連接起來.

        B、圖象變換法(請參考必修4三角函數(shù))

        常用變換方法有三種,即平移變換、伸縮變換和對稱變換

        (3)作用:

        1、直觀的看出函數(shù)的性質(zhì);

        2、利用數(shù)形結(jié)合的方法分析解題的思路。提高解題的速度。

        高一數(shù)學的知識點總結(jié) 8

        1.知識網(wǎng)絡圖

        復數(shù)知識點網(wǎng)絡圖

        2.復數(shù)中的難點

        (1)復數(shù)的向量表示法的運算.對于復數(shù)的向量表示有些學生掌握得不好,對向量的運算的幾何意義的靈活掌握有一定的困難.對此應認真體會復數(shù)向量運算的幾何意義,對其靈活地加以證明.

        (2)復數(shù)三角形式的乘方和開方.有部分學生對運算法則知道,但對其靈活地運用有一定的困難,特別是開方運算,應對此認真地加以訓練.

        (3)復數(shù)的輻角主值的求法.

        (4)利用復數(shù)的幾何意義靈活地解決問題.復數(shù)可以用向量表示,同時復數(shù)的模和輻角都具有幾何意義,對他們的理解和應用有一定難度,應認真加以體會.

        3.復數(shù)中的重點

        (1)理解好復數(shù)的概念,弄清實數(shù)、虛數(shù)、純虛數(shù)的不同點.

        (2)熟練掌握復數(shù)三種表示法,以及它們間的互化,并能準確地求出復數(shù)的`模和輻角.復數(shù)有代數(shù),向量和三角三種表示法.特別是代數(shù)形式和三角形式的互化,以及求復數(shù)的模和輻角在解決具體問題時經(jīng)常用到,是一個重點內(nèi)容.

        (3)復數(shù)的三種表示法的各種運算,在運算中重視共軛復數(shù)以及模的有關性質(zhì).復數(shù)的運算是復數(shù)中的主要內(nèi)容,掌握復數(shù)各種形式的運算,特別是復數(shù)運算的幾何意義更是重點內(nèi)容.

        (4)復數(shù)集中一元二次方程和二項方程的解法.

        高一數(shù)學的知識點總結(jié) 9

        1.多面體的結(jié)構(gòu)特征

        (1)棱柱有兩個面相互平行,其余各面都是平行四邊形,每相鄰兩個四邊形的公共邊平行。

        正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形。

        (2)棱錐的底面是任意多邊形,側(cè)面是有一個公共頂點的三角形。

        正棱錐:底面是正多邊形,頂點在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱均相等的正三棱錐叫正四面體.反過來,正棱錐的底面是正多邊形,且頂點在底面的射影是底面正多邊形的中心。

        (3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。

        2.旋轉(zhuǎn)體的結(jié)構(gòu)特征

        (1)圓柱可以由矩形繞一邊所在直線旋轉(zhuǎn)一周得到.

        (2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉(zhuǎn)一周得到.

        (3)圓臺可以由直角梯形繞直角腰所在直線旋轉(zhuǎn)一周或等腰梯形繞上下底面中心所在直線旋轉(zhuǎn)半周得到,也可由平行于底面的平面截圓錐得到。

        (4)球可以由半圓面繞直徑旋轉(zhuǎn)一周或圓面繞直徑旋轉(zhuǎn)半周得到。

        3.空間幾何體的三視圖

        空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側(cè)視圖、俯視圖。

        三視圖的長度特征:“長對正,寬相等,高平齊”,即正視圖和側(cè)視圖一樣高,正視圖和俯視圖一樣長,側(cè)視圖和俯視圖一樣寬.若相鄰兩物體的表面相交,表面的`交線是它們的分界線,在三視圖中,要注意實、虛線的畫法。

        4.空間幾何體的直觀圖

        空間幾何體的直觀圖常用斜二測畫法來畫,基本步驟是:

        (1)畫幾何體的底面

        在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點O,畫直觀圖時,把它們畫成對應的x′軸、y′軸,兩軸相交于點O′,且使∠x′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸.已知圖形中平行于x軸的線段,在直觀圖中長度不變,平行于y軸的線段,長度變?yōu)樵瓉淼囊话搿?/p>

        (2)畫幾何體的高

        在已知圖形中過O點作z軸垂直于xOy平面,在直觀圖中對應的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長度不變。

        高一數(shù)學的知識點總結(jié) 10

        集合的運算

        運算類型交 集并 集補 集

        定義域 R定義域 R

        值域>0值域>0

        在R上單調(diào)遞增在R上單調(diào)遞減

        非奇非偶函數(shù)非奇非偶函數(shù)

        函數(shù)圖象都過定點(0,1)函數(shù)圖象都過定點(0,1)

        注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:

        (1)在[a,b]上, 值域是 或 ;

       。2)若 ,則 ; 取遍所有正數(shù)當且僅當 ;

       。3)對于指數(shù)函數(shù) ,總有 ;

        二、對數(shù)函數(shù)

       。ㄒ唬⿲(shù)

        1.對數(shù)的概念:

        一般地,如果 ,那么數(shù) 叫做以 為底 的對數(shù),記作: ( — 底數(shù), — 真數(shù), — 對數(shù)式)

        說明:○1 注意底數(shù)的限制 ,且 ;

        ○2 ;

        ○3 注意對數(shù)的書寫格式.

        兩個重要對數(shù):

        ○1 常用對數(shù):以10為底的對數(shù) ;

        ○2 自然對數(shù):以無理數(shù) 為底的對數(shù)的對數(shù) .

        指數(shù)式與對數(shù)式的互化

        冪值 真數(shù)

        = N = b

        底數(shù)

        指數(shù) 對數(shù)

       。ǘ⿲(shù)的運算性質(zhì)

        如果 ,且 , , ,那么:

        ○1 + ;

        ○2 - ;

        ○3 .

        注意:換底公式: ( ,且 ; ,且 ; ).

        利用換底公式推導下面的結(jié)論:(1) ;(2) .

       。3)、重要的公式 ①、負數(shù)與零沒有對數(shù); ②、 , ③、對數(shù)恒等式

       。ǘ⿲(shù)函數(shù)

        1、對數(shù)函數(shù)的`概念:函數(shù) ,且 叫做對數(shù)函數(shù),其中 是自變量,函數(shù)的定義域是(0,+∞).

        注意:○1 對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。如: , 都不是對數(shù)函數(shù),而只能稱其為對數(shù)型函數(shù).

        ○2 對數(shù)函數(shù)對底數(shù)的限制: ,且 .

        2、對數(shù)函數(shù)的性質(zhì):

        a>10

        定義域x>0定義域x>0

        值域為R值域為R

        在R上遞增在R上遞減

        函數(shù)圖象都過定點(1,0)函數(shù)圖象都過定點(1,0)

       。ㄈ﹥绾瘮(shù)

        1、冪函數(shù)定義:一般地,形如 的函數(shù)稱為冪函數(shù),其中 為常數(shù).

        2、冪函數(shù)性質(zhì)歸納.

       。1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(1,1);

       。2) 時,冪函數(shù)的圖象通過原點,并且在區(qū)間 上是增函數(shù).特別地,當 時,冪函數(shù)的圖象下凸;當 時,冪函數(shù)的圖象上凸;

       。3) 時,冪函數(shù)的圖象在區(qū)間 上是減函數(shù).在第一象限內(nèi),當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨于 時,圖象在 軸上方無限地逼近 軸正半軸.

        第四章 函數(shù)的應用

        一、方程的根與函數(shù)的零點

        1、函數(shù)零點的概念:對于函數(shù) ,把使 成立的實數(shù) 叫做函數(shù) 的零點。

        2、函數(shù)零點的意義:函數(shù) 的零點就是方程 實數(shù)根,亦即函數(shù) 的圖象與 軸交點的橫坐標。

        即:方程 有實數(shù)根 函數(shù) 的圖象與 軸有交點 函數(shù) 有零點.

        3、函數(shù)零點的求法:

        ○1 (代數(shù)法)求方程 的實數(shù)根;

        ○2 (幾何法)對于不能用求根公式的方程,可以將它與函數(shù) 的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.

        4、二次函數(shù)的零點:

        二次函數(shù) .

       。1)△>0,方程 有兩不等實根,二次函數(shù)的圖象與 軸有兩個交點,二次函數(shù)有兩個零點.

       。2)△=0,方程 有兩相等實根,二次函數(shù)的圖象與 軸有一個交點,二次函數(shù)有一個二重零點或二階零點.

       。3)△<0,方程 無實根,二次函數(shù)的圖象與 軸無交點,二次函數(shù)無零點.

        5.函數(shù)的模型

        高一數(shù)學的知識點總結(jié) 11

        一、集合有關概念

        1. 集合的含義

        2. 集合的中元素的三個特性:

        (1) 元素的確定性,

        (2) 元素的互異性,

        (3) 元素的無序性,

        3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

        (1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

        (2) 集合的表示方法:列舉法與描述法。

        ? 注意:常用數(shù)集及其記法:

        非負整數(shù)集(即自然數(shù)集) 記作:N

        正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實數(shù)集R

        1) 列舉法:{a,b,c……}

        2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

        3) 語言描述法:例:{不是直角三角形的三角形}

        4) Venn圖:

        4、集合的分類:

        (1) 有限集 含有有限個元素的集合

        (2) 無限集 含有無限個元素的集合

        (3) 空集 不含任何元素的集合 例:{x|x2=-5}

        二、集合間的基本關系

        1.“包含”關系—子集

        注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

        反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

        2.“相等”關系:A=B (5≥5,且5≤5,則5=5)

        實例:設 A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

        即:① 任何一個集合是它本身的子集。A?A

        ②真子集:如果A?B,且A? B那就說集合A是集合B的真子集,記作A B(或B A)

       、廴绻 A?B, B?C ,那么 A?C

        ④ 如果A?B 同時 B?A 那么A=B

        3. 不含任何元素的集合叫做空集,記為Φ

        規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

        ? 有n個元素的集合,含有2n個子集,2n-1個真子集

        三、集合的運算

        運算類型 交 集 并 集 補 集

        定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.

        由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}).

        設S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

        二、函數(shù)的有關概念

        1.函數(shù)的概念:設A、B是非空的數(shù)集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的'取值范圍A叫做函數(shù)的定義域;與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域.

        注意:

        1.定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。

        求函數(shù)的定義域時列不等式組的主要依據(jù)是:

        (1)分式的分母不等于零;

        (2)偶次方根的被開方數(shù)不小于零;

        (3)對數(shù)式的真數(shù)必須大于零;

        (4)指數(shù)、對數(shù)式的底必須大于零且不等于1.

        (5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的那么,它的定義域是使各部分都有意義的x的值組成的集合.

        (6)指數(shù)為零底不可以等于零,

        (7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.

        相同函數(shù)的判斷方法:①表達式相同(與表示自變量和函數(shù)值的字母無關);②定義域一致 (兩點必須同時具備)

        2.值域 : 先考慮其定義域

        (1)觀察法

        (2)配方法

        (3)代換法

        3. 函數(shù)圖象知識歸納

        (1)定義:在平面直角坐標系中,以函數(shù) y=f(x) , (x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù) y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標的點(x,y),均在C上 .

        (2) 畫法

        A、 描點法:

        B、 圖象變換法

        常用變換方法有三種

        1) 平移變換

        2) 伸縮變換

        3) 對稱變換

        4.區(qū)間的概念

        (1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

        (2)無窮區(qū)間

        (3)區(qū)間的數(shù)軸表示.

        5.映射

        一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A B為從集合A到集合B的一個映射。記作f:A→B

        6.分段函數(shù)

        (1)在定義域的不同部分上有不同的解析表達式的函數(shù)。

        (2)各部分的自變量的取值情況.

        (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

        補充:復合函數(shù)

        如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復合函數(shù)。

        二.函數(shù)的性質(zhì)

        1.函數(shù)的單調(diào)性(局部性質(zhì))

        (1)增函數(shù)

        設函數(shù)y=f(x)的定義域為I,如果對于定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個自變量x1,x2,當x1

        如果對于區(qū)間D上的任意兩個自變量的值x1,x2,當x1f(x2),那么就說f(x)在這個區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.

        注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);

        (2) 圖象的特點

        如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的

        (3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

        (A) 定義法:

        ○1 任取x1,x2∈D,且x1

        ○2 作差f(x1)-f(x2);

        ○3 變形(通常是因式分解和配方);

        ○4 定號(即判斷差f(x1)-f(x2)的正負);

        ○5 下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).

        (B)圖象法(從圖象上看升降)

        (C)復合函數(shù)的單調(diào)性

        復合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關,其規(guī)律:“同增異減”

        注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.

        8.函數(shù)的奇偶性(整體性質(zhì))

        (1)偶函數(shù)

        一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

        (2).奇函數(shù)

        一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

        (3)具有奇偶性的函數(shù)的圖象的特征

        偶函數(shù)的圖象關于y軸對稱;奇函數(shù)的圖象關于原點對稱.

        利用定義判斷函數(shù)奇偶性的步驟:

        ○1首先確定函數(shù)的定義域,并判斷其是否關于原點對稱;

        ○2確定f(-x)與f(x)的關系;

        ○3作出相應結(jié)論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù).

        (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;

        (3)利用定理,或借助函數(shù)的圖象判定 .

        9、函數(shù)的解析表達式

        (1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個變量之間的函數(shù)關系時,一是要求出它們之間的對應法則,二是要求出函數(shù)的定義域.

        (2)求函數(shù)的解析式的主要方法有:

        1) 湊配法

        2) 待定系數(shù)法

        3) 換元法

        4) 消參法

        10.函數(shù)最大(小)值(定義見課本p36頁)

        ○1 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值

        ○2 利用圖象求函數(shù)的最大(小)值

        ○3 利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值:

        如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);

        如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);

        高一數(shù)學的知識點總結(jié) 12

        棱錐

        棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐

        棱錐的的性質(zhì):

        (1)側(cè)棱交于一點。側(cè)面都是三角形

        (2)平行于底面的截面與底面是相似的`多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方

        正棱錐

        正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

        正棱錐的性質(zhì):

        (1)各側(cè)棱交于一點且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

        (3)多個特殊的直角三角形

        esp:

        a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

        b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

        高一數(shù)學的知識點總結(jié) 13

        1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

        解析式

        頂點坐標

        對稱軸

        y=ax^2

        (0,0)

        x=0

        y=a(x-h)^2

        (h,0)

        x=h

        y=a(x-h)^2+k

        (h,k)

        x=h

        y=ax^2+bx+c

        (-b/2a,[4ac-b^2]/4a)

        x=-b/2a

        當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

        當h<0時,則向左平行移動|h|個單位得到.

        當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;

        當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

        當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

        當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

        因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

        2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).

        3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的.增大而減小.

        4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

        (1)圖象與y軸一定相交,交點坐標為(0,c);

        (2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

        (a≠0)的兩根.這兩點間的距離AB=|x?-x?|

        當△=0.圖象與x軸只有一個交點;

        當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0.

        5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.

        頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.

        6.用待定系數(shù)法求二次函數(shù)的解析式

        (1)當題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

        y=ax^2+bx+c(a≠0).

        (2)當題給條件為已知圖象的頂點坐標或?qū)ΨQ軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).

        (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

        7.二次函數(shù)知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn).

        高一數(shù)學的知識點總結(jié) 14

        圓的方程定義:

        圓的標準方程(x—a)2+(y—b)2=r2中,有三個參數(shù)a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。

        直線和圓的位置關系:

        1、直線和圓位置關系的判定方法一是方程的觀點,即把圓的.方程和直線的方程聯(lián)立成方程組,利用判別式Δ來討論位置關系。

       、佴>0,直線和圓相交、②Δ=0,直線和圓相切、③Δ<0,直線和圓相離。

        方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較。

       、賒R,直線和圓相離、

        2、直線和圓相切,這類問題主要是求圓的切線方程、求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。

        3、直線和圓相交,這類問題主要是求弦長以及弦的中點問題。

        切線的性質(zhì)

        ⑴圓心到切線的距離等于圓的半徑;

       、七^切點的半徑垂直于切線;

       、墙(jīng)過圓心,與切線垂直的直線必經(jīng)過切點;

       、冉(jīng)過切點,與切線垂直的直線必經(jīng)過圓心;

        當一條直線滿足

        (1)過圓心;

        (2)過切點;

       。3)垂直于切線三個性質(zhì)中的兩個時,第三個性質(zhì)也滿足。

        切線的判定定理

        經(jīng)過半徑的外端點并且垂直于這條半徑的直線是圓的切線。

        切線長定理

        從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。

        高一數(shù)學的知識點總結(jié) 15

        立體幾何初步

        1、柱、錐、臺、球的結(jié)構(gòu)特征

        (1)棱柱:

        定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

        分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱柱、四棱柱、五棱柱等。

        表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱。

        幾何特征:兩底面是對應邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

        (2)棱錐

        定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。

        分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱錐、四棱錐、五棱錐等

        表示:用各頂點字母,如五棱錐

        幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

        (3)棱臺:

        定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

        分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等

        表示:用各頂點字母,如五棱臺

        幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點

        (4)圓柱:

        定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。

        幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形。

        (5)圓錐:

        定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。

        幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形。

        (6)圓臺:

        定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

        幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形。

        (7)球體:

        定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

        幾何特征:①球的截面是圓;②球面上任意一點到球心的'距離等于半徑。

        2、空間幾何體的三視圖

        定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

        注:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

        俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;

        側(cè)視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。

        3、空間幾何體的直觀圖——斜二測畫法

        斜二測畫法特點:

        ①原來與x軸平行的線段仍然與x平行且長度不變;

       、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半。

        直線與方程

        (1)直線的傾斜角

        定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

        (2)直線的斜率

        ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當時。當時,;當時,不存在。

        ②過兩點的直線的斜率公式:

        注意下面四點:

        (1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

        (2)k與P1、P2的順序無關;

        (3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

        (4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

        冪函數(shù)

        定義:

        形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。

        定義域和值域:

        當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。當x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:在x大于0時,函數(shù)的值域總是大于0的實數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。而只有a為正數(shù),0才進入函數(shù)的值域

        性質(zhì):

        對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

        首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:

        排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

        排除了為0這種可能,即對于x<0和x>0的所有實數(shù),q不能是偶數(shù);

        排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。

        指數(shù)函數(shù)

        (1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

        (2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。

        (3)函數(shù)圖形都是下凹的。

        (4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。

        (5)可以看到一個顯然的規(guī)律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

        (6)函數(shù)總是在某一個方向上無限趨向于X軸,永不相交。

        (7)函數(shù)總是通過(0,1)這點。

        (8)顯然指數(shù)函數(shù)無界。

        奇偶性

        定義

        一般地,對于函數(shù)f(x)

        (1)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。

        (2)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。

        (3)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。

        (4)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。

        高一數(shù)學的知識點總結(jié) 16

        內(nèi)容子交并補集,還有冪指對函數(shù)。性質(zhì)奇偶與增減,觀察圖象最明顯。

        復合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細證明它,還須將那定義抓。

        指數(shù)與對數(shù)函數(shù),初中學習方法,兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。

        函數(shù)定義域好求。分母不能等于0,偶次方根須非負,零和負數(shù)無對數(shù);

        正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實數(shù)集,多種情況求交集。

        兩個互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對稱,Y=X是對稱軸;

        求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來函數(shù)的值域。

        冪函數(shù)性質(zhì)易記,指數(shù)化既約分數(shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),

        奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負。

        形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

        自變量x的取值范圍是不等于0的一切實數(shù)。

        反比例函數(shù)圖像性質(zhì):

        反比例函數(shù)的圖像為雙曲線。

        由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關于原點對稱。

        另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標軸作垂線,高中地理,這點、兩個垂足及原點所圍成的矩形面積是定值,為?k?。

        如圖,上面給出了k分別為正和負(2和-2)時的函數(shù)圖像。

        當K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

        當K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

        反比例函數(shù)圖像只能無限趨向于坐標軸,無法和坐標軸相交。

        知識點:

        1.過反比例函數(shù)圖象上任意一點作兩坐標軸的.垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為k。

        2.對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

        高一數(shù)學的知識點總結(jié) 17

        一、集合有關概念

        集合的中元素的三個特性:

        (1)元素的確定性如:世界上最高的山

        (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

        (3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

        注意:常用數(shù)集及其記法:非負整數(shù)集(即自然數(shù)集)記作:N正整數(shù)集描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{xR|x-3>2}

        4、集合的分類:

        (1)有限集含有有限個元素的集合

        (2)無限集含有無限個元素的集合

        (3)空集不含任何元素的集合=-5}

        二、集合間的基本關系

        1、“包含”關系-子集注意:是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,記作-1=0}B={-1,1}“元素相同則兩集合相等”任何一個集合是它本身的子集。AA真子集:如果AB,且A那就說集合A是集合B如果AB同時不含任何元素的集合叫做空集,記為Φ規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

        個子集,2n-1個真子集

        二、函數(shù)

        1、函數(shù)定義域、值域求法綜合

        2、、函數(shù)奇偶性與單調(diào)性問題的解題策略

        3、恒成立問題的求解策略

        4、反函數(shù)的幾種題型及方法

        5、二次函數(shù)根的問題--一題多解&指數(shù)函數(shù)y=a^x屬于Q)指數(shù)函數(shù)對稱規(guī)律:

        1、函數(shù)y=a^x關于y軸對稱

        2、函數(shù)y=a^x關于x軸對稱

        3、函數(shù)y=a^x關于坐標原點對稱&對數(shù)函數(shù)y=loga^x如果logloglog冪函數(shù)y=x^a(a屬于R)

        1、冪函數(shù)定義:一般地,形如的函數(shù)稱為冪函數(shù),其中α為常數(shù)。

        2、冪函數(shù)性質(zhì)歸納。

        (1)所有的冪函數(shù)在(0,+)都有定義并且圖象都過點(1,1);上是減函數(shù)。在第一象限內(nèi),當x從右邊趨向原點時,圖象在y軸右方無限地逼近y軸上方無限地逼近x方程的根與函數(shù)的零點1、函數(shù)零點的概念:對于函數(shù)的'零點。

        2、函數(shù)零點的意義:函數(shù)軸交點的橫坐標。即:方程有零點。

        3、函數(shù)零點的求法:的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點。

        4、二次函數(shù)的零點:

        (1)二次函數(shù)bxaxbxax有兩不等實根,二次函軸有兩個交點,二次函數(shù)有兩個零點。

        (2)=0,方程bxax有兩相等實根,二次函軸有一個交點,二次函數(shù)有一個二重零點或二階零點。

        (3)<0,方程bxax無實根,二次函數(shù)的圖象與x軸無交點,二次函數(shù)無零點。

        三、平面向量

        向量:既有大小,又有方向的量。

        數(shù)量:只有大小,沒有方向的量。

        有向線段的三要素:起點、方向、長度。零向量:長度為0的向量。

        單位向量:長度等于1個單位的向量。

        相等向量:長度相等且方向相同的向量

        向量的運算:

        高一數(shù)學的知識點總結(jié) 18

        一、點、線、面概念與符號

        平面α、β、γ,直線a、b、c,點A、B、C;

        A∈a——點A在直線a上或直線a經(jīng)過點;

        aα——直線a在平面α內(nèi);

        α∩β= a——平面α、β的交線是a;

        α∥β——平面α、β平行;

        β⊥γ——平面β與平面γ垂直.

        二、點、線、面常用定理

        1.異面直線判斷定理

        過平面外一點與平面內(nèi)一點的直線,和平面內(nèi)不過該點的直線是異面直線.

        2.線與線平行的判定定理

        (1)平行于同一直線的兩條直線平行;

        (2)垂直于同一平面的兩條直線平行;

        (3)如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行;

        (4)如果兩個平行平面同時和第三個平面相交,那么它們的交線平行;

        (5)如果一條直線平行于兩個相交平面,那么這條直線平行于兩個平面的交線.

        3.線與線垂直的判定

        若一條直線垂直于一個平面,那么這條直線垂直于平面內(nèi)所有直線.

        4.線與面平行的.判定

        (1)平面外一條直線和平面內(nèi)一條直線平行,則該直線與此平面平行;

        (2)若兩個平面平行,則在一個平面內(nèi)的任何一條直線必平行于另一個平面.

        高一數(shù)學的知識點總結(jié) 19

        1、對數(shù)的概念

        (1)對數(shù)的定義:

        如果ax=N(a>0且a≠1),那么數(shù)x叫做以a為底N的對數(shù),記作x=logaN,其中a叫做對數(shù)的底數(shù),N叫做真數(shù)。當a=10時叫常用對數(shù)。記作x=lg_N,當a=e時叫自然對數(shù),記作x=ln_N.

       。2)對數(shù)的.常用關系式(a,b,c,d均大于0且不等于1):

       、賚oga1=0.

        ②logaa=1.

       、蹖(shù)恒等式:alogaN=N.

        二、解題方法

        1、在運用性質(zhì)logaMn=nlogaM時,要特別注意條件,在無M>0的條件下應為logaMn=nloga|M|(n∈N*,且n為偶數(shù))。

        2、對數(shù)值取正、負值的規(guī)律:

        當a>1且b>1,或0

        當a>1且0

        3、對數(shù)函數(shù)的定義域及單調(diào)性:

        在對數(shù)式中,真數(shù)必須大于0,所以對數(shù)函數(shù)y=logax的定義域應為{x|x>0}。對數(shù)函數(shù)的單調(diào)性和a的值有關,因而,在研究對數(shù)函數(shù)的單調(diào)性時,要按0

        4、對數(shù)式的化簡與求值的常用思路

        (1)先利用冪的運算把底數(shù)或真數(shù)進行變形,化成分數(shù)指數(shù)冪的形式,使冪的底數(shù)最簡,然后正用對數(shù)運算法則化簡合并。

       。2)先將對數(shù)式化為同底數(shù)對數(shù)的和、差、倍數(shù)運算,然后逆用對數(shù)的運算法則,轉(zhuǎn)化為同底對數(shù)真數(shù)的積、商、冪再運算。

        高一數(shù)學的知識點總結(jié) 20

        1、函數(shù)的基本概念

        (1)函數(shù)的定義:設A、B是非空數(shù)集,如果按照某種確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有確定的數(shù)f(x)和它對應,那么稱f:A→B為從集合A到集合B的一個函數(shù),記作:y=f(x),x∈A.

       。2)函數(shù)的定義域、值域

        在函數(shù)y=f(x),x∈A中,x叫自變量,x的取值范圍A叫做定義域,與x的值對應的y值叫函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫值域。值域是集合B的子集。

       。3)函數(shù)的'三要素:定義域、值域和對應關系。

       。4)相等函數(shù):如果兩個函數(shù)的定義域和對應關系完全一致,則這兩個函數(shù)相等;這是判斷兩函數(shù)相等的依據(jù)。

        2、函數(shù)的三種表示方法

        表示函數(shù)的常用方法有:解析法、列表法、圖象法。

        3、映射的概念

        一般地,設A、B是兩個非空的集合,如果按某一個確定的對應關系f,使對于集合A中的任意一個元素x,在集合B中都有確定的元素y與之對應,那么就稱對應f:A→B為從集合A到集合B的一個映射。

        注意:

        一個方法

        求復合函數(shù)y=f(t),t=q(x)的定義域的方法:

        若y=f(t)的定義域為(a,b),則解不等式得a

        兩個防范

        (1)解決函數(shù)問題,必須優(yōu)先考慮函數(shù)的定義域。

        (2)用換元法解題時,應注意換元前后的等價性。

        三個要素

        函數(shù)的三要素是:定義域、值域和對應關系。值域是由函數(shù)的定義域和對應關系所確定的。兩個函數(shù)的定義域和對應關系完全一致時,則認為兩個函數(shù)相等。函數(shù)是特殊的映射,映射f:A→B的三要素是兩個集合A、B和對應關系f.

      【高一數(shù)學的知識點總結(jié)】相關文章:

      高一數(shù)學函數(shù)的知識點總結(jié)05-28

      高一數(shù)學的知識點歸納總結(jié)07-11

      高一數(shù)學知識點總結(jié)11-20

      高一數(shù)學知識點總結(jié)06-06

      高一數(shù)學必修知識點總結(jié)08-01

      高一數(shù)學知識點總結(jié)11-09

      高一數(shù)學知識點總結(jié)06-10

      高一數(shù)學必修知識點總結(jié)08-30

      高一數(shù)學知識點總結(jié)整理03-29

      高一數(shù)學知識點的歸納總結(jié)07-28