在线视频国产欧美另类,偷拍亚洲一区一区二区三区,日韩中文字幕在线视频,日本精品久久久久中文字幕

<small id="qpqhz"></small>
  • <legend id="qpqhz"></legend>

      <td id="qpqhz"><strong id="qpqhz"></strong></td>
      <small id="qpqhz"><menuitem id="qpqhz"></menuitem></small>
    1. 最新高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

      時(shí)間:2021-09-08 12:16:17 總結(jié) 我要投稿

      精選最新高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納5篇

        總結(jié)是指社會(huì)團(tuán)體、企業(yè)單位和個(gè)人在自身的某一時(shí)期、某一項(xiàng)目或某些工作告一段落或者全部完成后進(jìn)行回顧檢查、分析評(píng)價(jià),從而肯定成績(jī),得到經(jīng)驗(yàn),找出差距,得出教訓(xùn)和一些規(guī)律性認(rèn)識(shí)的一種書(shū)面材料,它能幫我們理順知識(shí)結(jié)構(gòu),突出重點(diǎn),突破難點(diǎn),不妨坐下來(lái)好好寫(xiě)寫(xiě)總結(jié)吧。總結(jié)怎么寫(xiě)才不會(huì)流于形式呢?下面是小編為大家整理的精選最新高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納5篇,歡迎閱讀,希望大家能夠喜歡。

      精選最新高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納5篇

      精選最新高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納5篇1

        1過(guò)兩點(diǎn)有且只有一條直線(xiàn)

        2兩點(diǎn)之間線(xiàn)段最短

        3同角或等角的補(bǔ)角相等

        4同角或等角的余角相等

        5過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直

        6直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短

        7平行公理經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行

        8如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行

        9同位角相等,兩直線(xiàn)平行

        10內(nèi)錯(cuò)角相等,兩直線(xiàn)平行

        11同旁?xún)?nèi)角互補(bǔ),兩直線(xiàn)平行

        12兩直線(xiàn)平行,同位角相等

        13兩直線(xiàn)平行,內(nèi)錯(cuò)角相等

        14兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)

        15定理三角形兩邊的和大于第三邊

        16推論三角形兩邊的差小于第三邊

        17三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°

        18推論1直角三角形的兩個(gè)銳角互余

        19推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

        20推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

        21全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

        22邊角邊公理(sas)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等

        23角邊角公理(asa)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等

        24推論(aas)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等

        25邊邊邊公理(sss)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等

        26斜邊、直角邊公理(hl)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等

        27定理1在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等

        28定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上

        29角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合

        30等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)

        31推論1等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊

        32等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合

        33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°

        34等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

        35推論1三個(gè)角都相等的三角形是等邊三角形

        36推論2有一個(gè)角等于60°的等腰三角形是等邊三角形

        37在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半

        38直角三角形斜邊上的中線(xiàn)等于斜邊上的一半

        39定理線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等

        40逆定理和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上

        41線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合

        42定理1關(guān)于某條直線(xiàn)對(duì)稱(chēng)的兩個(gè)圖形是全等形

        43定理2如果兩個(gè)圖形關(guān)于某直線(xiàn)對(duì)稱(chēng),那么對(duì)稱(chēng)軸是對(duì)應(yīng)點(diǎn)連線(xiàn)的垂直平分線(xiàn)44定理3兩個(gè)圖形關(guān)于某直線(xiàn)對(duì)稱(chēng),如果它們的對(duì)應(yīng)線(xiàn)段或延長(zhǎng)線(xiàn)相交,那么交點(diǎn)在對(duì)稱(chēng)軸上

        45逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對(duì)稱(chēng)

        46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2

        47勾股定理的逆定理如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a^2+b^2=c^2,那么這個(gè)三角形是直角三角形

        48定理四邊形的內(nèi)角和等于360°

        49四邊形的外角和等于360°

        50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°

        51推論任意多邊的外角和等于360°

        52平行四邊形性質(zhì)定理1平行四邊形的對(duì)角相等

        53平行四邊形性質(zhì)定理2平行四邊形的對(duì)邊相等

        54推論夾在兩條平行線(xiàn)間的平行線(xiàn)段相等

        55平行四邊形性質(zhì)定理3平行四邊形的對(duì)角線(xiàn)互相平分

        56平行四邊形判定定理1兩組對(duì)角分別相等的四邊形是平行四邊形

        57平行四邊形判定定理2兩組對(duì)邊分別相等的四邊形是平行四邊形

        58平行四邊形判定定理3對(duì)角線(xiàn)互相平分的四邊形是平行四邊形

        59平行四邊形判定定理4一組對(duì)邊平行相等的四邊形是平行四邊形

        60矩形性質(zhì)定理1矩形的四個(gè)角都是直角

        61矩形性質(zhì)定理2矩形的對(duì)角線(xiàn)相等

        62矩形判定定理1有三個(gè)角是直角的四邊形是矩形

        63矩形判定定理2對(duì)角線(xiàn)相等的平行四邊形是矩形

        64菱形性質(zhì)定理1菱形的四條邊都相等

        65菱形性質(zhì)定理2菱形的對(duì)角線(xiàn)互相垂直,并且每一條對(duì)角線(xiàn)平分一組對(duì)角

        66菱形面積=對(duì)角線(xiàn)乘積的一半,即s=(a×b)÷2

        67菱形判定定理1四邊都相等的四邊形是菱形

        68菱形判定定理2對(duì)角線(xiàn)互相垂直的平行四邊形是菱形

        69正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等

        70正方形性質(zhì)定理2正方形的兩條對(duì)角線(xiàn)相等,并且互相垂直平分,每條對(duì)角線(xiàn)平分一組對(duì)角

        71定理1關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形是全等的

        72定理2關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形,對(duì)稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對(duì)稱(chēng)中心,并且被對(duì)稱(chēng)中心平分

        73逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱(chēng)

        74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等

        75等腰梯形的兩條對(duì)角線(xiàn)相等

        76等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形

        77對(duì)角線(xiàn)相等的梯形是等腰梯形

        78平行線(xiàn)等分線(xiàn)段定理如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等

        79推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線(xiàn),必平分另一腰

        80推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第三邊

        81三角形中位線(xiàn)定理三角形的中位線(xiàn)平行于第三邊,并且等于它的一半

        82梯形中位線(xiàn)定理梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半l=(a+b)÷2s=l×h

        83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d

        84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d

        85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

        86平行線(xiàn)分線(xiàn)段成比例定理三條平行線(xiàn)截兩條直線(xiàn),所得的對(duì)應(yīng)線(xiàn)段成比例

        87推論平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(zhǎng)線(xiàn)),所得的對(duì)應(yīng)線(xiàn)段成比例

        88定理如果一條直線(xiàn)截三角形的兩邊(或兩邊的延長(zhǎng)線(xiàn))所得的對(duì)應(yīng)線(xiàn)段成比例,那么這條直線(xiàn)平行于三角形的第三邊

        89平行于三角形的一邊,并且和其他兩邊相交的直線(xiàn),所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例

        90定理平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(zhǎng)線(xiàn))相交,所構(gòu)成的三角形與原三角形相似

        91相似三角形判定定理1兩角對(duì)應(yīng)相等,兩三角形相似(asa)

        92直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似

        93判定定理2兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(sas)

        94判定定理3三邊對(duì)應(yīng)成比例,兩三角形相似(sss)

        95定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似

        96性質(zhì)定理1相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線(xiàn)的比與對(duì)應(yīng)角平分線(xiàn)的比都等于相似比

        97性質(zhì)定理2相似三角形周長(zhǎng)的比等于相似比

        98性質(zhì)定理3相似三角形面積的比等于相似比的平方

        99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等

        于它的余角的正弦值

        100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

        101圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

        102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

        103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

        104同圓或等圓的半徑相等

        105到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

        106和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線(xiàn)段的垂直平分線(xiàn)

        107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)

        108到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)

        109定理不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

        110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

        111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

       、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧

       、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

        112推論2圓的兩條平行弦所夾的弧相等

        113圓是以圓心為對(duì)稱(chēng)中心的中心對(duì)稱(chēng)圖形

        114定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

        115推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

        116定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

        117推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

        118推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑

        119推論3如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形

        120定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

        121①直線(xiàn)l和⊙o相交d

       、谥本(xiàn)l和⊙o相切d=r

        ③直線(xiàn)l和⊙o相離d>r

        122切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)

        123切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑

        124推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)

        125推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心

        126切線(xiàn)長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(zhǎng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角

        127圓的外切四邊形的兩組對(duì)邊的和相等

        128弦切角定理弦切角等于它所夾的弧對(duì)的圓周角

        129推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

        130相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(zhǎng)的積相等

        131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的

        兩條線(xiàn)段的比例中項(xiàng)

        132切割線(xiàn)定理從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(zhǎng)是這點(diǎn)到割

        線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(zhǎng)的比例中項(xiàng)

        133推論從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(zhǎng)的積相等

        134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上

        135①兩圓外離d>r+r②兩圓外切d=r+r

       、蹆蓤A相交r-rr)

        ④兩圓內(nèi)切d=r-r(r>r)⑤兩圓內(nèi)含dr)

        136定理相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦

        137定理把圓分成n(n≥3):

       、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

        ⑵經(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

        138定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

        139正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

        140定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

        141正n邊形的面積sn=pnrn/2p表示正n邊形的周長(zhǎng)

        142正三角形面積√3a/4a表示邊長(zhǎng)

        143如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應(yīng)為

        360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

        144弧長(zhǎng)計(jì)算公式:l=nπr/180

        145扇形面積公式:s扇形=nπr2/360=lr/2

        146內(nèi)公切線(xiàn)長(zhǎng)=d-(r-r)外公切線(xiàn)長(zhǎng)=d-(r+r)

        147等腰三角形的兩個(gè)底腳相等

        148等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)、底邊上的高相互重合

        149如果一個(gè)三角形的兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等

        150三條邊都相等的三角形叫做等邊三角形

      精選最新高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納5篇2

        冪函數(shù)的性質(zhì):

        對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來(lái)討論各自的特性:

        首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:

        排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);

        排除了為0這種可能,即對(duì)于x<0x="">0的所有實(shí)數(shù),q不能是偶數(shù);

        排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

        總結(jié)起來(lái),就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);

        如果a為負(fù)數(shù),則x肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的'所有實(shí)數(shù)。

        在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。

        在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。

        而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。

        由于x大于0是對(duì)a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.

        可以看到:

        (1)所有的圖形都通過(guò)(1,1)這點(diǎn)。

        (2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。

        (3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。

        (4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。

        (5)a大于0,函數(shù)過(guò)(0,0);a小于0,函數(shù)不過(guò)(0,0)點(diǎn)。

        (6)顯然冪函數(shù)_。

        解題方法:換元法

        解數(shù)學(xué)題時(shí),把某個(gè)式子看成一個(gè)整體,用一個(gè)變量去代替它,從而使問(wèn)題得到簡(jiǎn)化,這種方法叫換元法.換元的實(shí)質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對(duì)象,將問(wèn)題移至新對(duì)象的知識(shí)背景中去研究,從而使非標(biāo)準(zhǔn)型問(wèn)題標(biāo)準(zhǔn)化、復(fù)雜問(wèn)題簡(jiǎn)單化,變得容易處理。

        換元法又稱(chēng)輔助元素法、變量代換法.通過(guò)引進(jìn)新的變量,可以把分散的條件聯(lián)系起來(lái),隱含的條件顯露出來(lái),或者把條件與結(jié)論聯(lián)系起來(lái).或者變?yōu)槭煜さ男问剑褟?fù)雜的計(jì)算和推證簡(jiǎn)化。

        它可以化高次為低次、化分式為整式、化無(wú)理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問(wèn)題中有廣泛的應(yīng)用。

        練習(xí)題:

        1、若f(x)=x2-x+b,且f(log2a)=b,log2[f(a)]=2(a≠1).

        (1)求f(log2x)的最小值及對(duì)應(yīng)的x值;

        (2)x取何值時(shí),f(log2x)>f(1)且log2[f(x)]

        2、已知函數(shù)f(x)=3x+k(k為常數(shù)),A(-2k,2)是函數(shù)y=f-1(x)圖象上的點(diǎn).[來(lái)源:Z_k.Com]

        (1)求實(shí)數(shù)k的值及函數(shù)f-1(x)的解析式;

        (2)將y=f-1(x)的圖象按向量a=(3,0)平移,得到函數(shù)y=g(x)的圖象,若2f-1(x+-3)-g(x)≥1恒成立,試求實(shí)數(shù)m的取值范圍.

      精選最新高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納5篇3

        1.學(xué)習(xí)的心態(tài)。

        多數(shù)中等生的數(shù)學(xué)成績(jī)是很有希望提升。一方面是目前具備了一定基礎(chǔ),加上努力認(rèn)真,這種學(xué)生態(tài)度沒(méi)有問(wèn)題,只是缺少方向和適合的方法而已。另一方面,備考時(shí)間還算充足,還有時(shí)間進(jìn)行調(diào)整和優(yōu)化。所以平日里多給自己一些積極的心里暗示,堅(jiān)持不斷地實(shí)踐合適自己的學(xué)習(xí)方法。

        2.備考的方向。

        什么是備考方向?所謂備考方向就是考試方向。在平時(shí)做題的時(shí)候,要弄明白,你面前的題是哪個(gè)知識(shí)框架下,那種類(lèi)型的題型,做這樣類(lèi)型的題有什么樣的方法,這一類(lèi)的題型有哪些?等等。

        題型和知識(shí)點(diǎn)都是有限的,只要我們根據(jù)?嫉念}型,尋找解題思路并合理的訓(xùn)練,那么很容易提升自己的數(shù)學(xué)成績(jī)。

        3.訓(xùn)練的方式。

        每個(gè)人實(shí)際的情況不一樣,訓(xùn)練的方式也不不同,考試中取得的好成績(jī)都是考前合理訓(xùn)練的結(jié)果。很多學(xué)生抱怨時(shí)間不足,每天做完作業(yè)以后,身心疲憊。面對(duì)一堆題目,特別是數(shù)學(xué)題,可以注重以下幾個(gè)角度:

        (1)弄清楚自己的需要。例如拿到老師布置的作業(yè),無(wú)論是試卷還是課本習(xí)題,如果帶著情緒做,那么效果肯定不好。首先要弄清自己的需要,比如這些題目中哪些題目質(zhì)量好?哪些是你還沒(méi)有弄懂的?哪些是以前常出現(xiàn)的?哪些是你肯定會(huì)做的等等,你最想解決哪題?

        (2)制定目標(biāo)。如果應(yīng)付老師來(lái)做題無(wú)疑導(dǎo)致做題質(zhì)量不高,那么在做題之前應(yīng)該制定一定目標(biāo),如上面說(shuō)的那樣,你通過(guò)哪些題目來(lái)訓(xùn)練正確率?通過(guò)哪些題目來(lái)練習(xí)速度?通過(guò)哪些題目來(lái)完善步驟等等。有了目標(biāo),更好的實(shí)現(xiàn)目標(biāo),在這個(gè)過(guò)程中,你肯定有很多收獲。

      精選最新高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納5篇4

        1.函數(shù)的奇偶性

        (1)若f(x)是偶函數(shù),那么f(x)=f(-x);

        (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

        (3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);

        (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;

        (5)奇函數(shù)在對(duì)稱(chēng)的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱(chēng)的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

        2.復(fù)合函數(shù)的有關(guān)問(wèn)題

        (1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問(wèn)題一定要注意定義域優(yōu)先的原則。

        (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

        3.函數(shù)圖像(或方程曲線(xiàn)的對(duì)稱(chēng)性)

        (1)證明函數(shù)圖像的對(duì)稱(chēng)性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱(chēng)中心(對(duì)稱(chēng)軸)的對(duì)稱(chēng)點(diǎn)仍在圖像上;

        (2)證明圖像C1與C2的對(duì)稱(chēng)性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱(chēng)中心(對(duì)稱(chēng)軸)的對(duì)稱(chēng)點(diǎn)仍在C2上,反之亦然;

        (3)曲線(xiàn)C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱(chēng)曲線(xiàn)C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

        (4)曲線(xiàn)C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱(chēng)曲線(xiàn)C2方程為:f(2a-x,2b-y)=0;

        (5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線(xiàn)x=a對(duì)稱(chēng);

        (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線(xiàn)x=對(duì)稱(chēng);

        4.函數(shù)的周期性

        (1)y=f(x)對(duì)x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

        (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線(xiàn)x=a對(duì)稱(chēng),則f(x)是周期為2︱a︱的周期函數(shù);

        (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線(xiàn)x=a對(duì)稱(chēng),則f(x)是周期為4︱a︱的周期函數(shù);

        (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱(chēng),則f(x)是周期為2的周期函數(shù);

        (5)y=f(x)的圖象關(guān)于直線(xiàn)x=a,x=b(a≠b)對(duì)稱(chēng),則函數(shù)y=f(x)是周期為2的周期函數(shù);

        (6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

        5.方程k=f(x)有解k∈D(D為f(x)的值域);

        6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

        7.(1)(a>0,a≠1,b>0,n∈R+);(2)logaN=(a>0,a≠1,b>0,b≠1);

        (3)logab的符號(hào)由口訣“同正異負(fù)”記憶;(4)alogaN=N(a>0,a≠1,N>0);

        8.判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):(1)A中元素必須都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

        9.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

        10.對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:(1)定義域上的單調(diào)函數(shù)必有反函數(shù);(2)奇函數(shù)的反函數(shù)也是奇函數(shù);(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);(4)周期函數(shù)不存在反函數(shù);(5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;(5)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).

        11.處理二次函數(shù)的問(wèn)題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問(wèn)題用“兩看法”:一看開(kāi)口方向;二看對(duì)稱(chēng)軸與所給區(qū)間的相對(duì)位置關(guān)系;

        12.依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類(lèi)參數(shù)的范圍問(wèn)題

        13.恒成立問(wèn)題的處理方法:(1)分離參數(shù)法;(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

      精選最新高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納5篇5

        內(nèi)容子交并補(bǔ)集,還有冪指對(duì)函數(shù)。性質(zhì)奇偶與增減,觀察圖象最明顯。

        復(fù)合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細(xì)證明它,還須將那定義抓。

        指數(shù)與對(duì)數(shù)函數(shù),初中學(xué)習(xí)方法,兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。

        函數(shù)定義域好求。分母不能等于0,偶次方根須非負(fù),零和負(fù)數(shù)無(wú)對(duì)數(shù);

        正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實(shí)數(shù)集,多種情況求交集。

        兩個(gè)互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對(duì)稱(chēng),Y=X是對(duì)稱(chēng)軸;

        求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來(lái)函數(shù)的值域。

        冪函數(shù)性質(zhì)易記,指數(shù)化既約分?jǐn)?shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),

        奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負(fù)。

        形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

        自變量x的取值范圍是不等于0的一切實(shí)數(shù)。

        反比例函數(shù)圖像性質(zhì):

        反比例函數(shù)的圖像為雙曲線(xiàn)。

        由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對(duì)稱(chēng)。

        另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線(xiàn),高中地理,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為?k?。

        如圖,上面給出了k分別為正和負(fù)(2和-2)時(shí)的函數(shù)圖像。

        當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過(guò)一,三象限,是減函數(shù)

        當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過(guò)二,四象限,是增函數(shù)

        反比例函數(shù)圖像只能無(wú)限趨向于坐標(biāo)軸,無(wú)法和坐標(biāo)軸相交。

        知識(shí)點(diǎn):

        1.過(guò)反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線(xiàn)段,這兩條垂線(xiàn)段與坐標(biāo)軸圍成的矩形的面積為k。

        2.對(duì)于雙曲線(xiàn)y=k/x,若在分母上加減任意一個(gè)實(shí)數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線(xiàn)圖象向左或右平移一個(gè)單位。(加一個(gè)數(shù)時(shí)向左平移,減一個(gè)數(shù)時(shí)向右平移)

      【精選最新高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納5篇】相關(guān)文章:

      最新高一數(shù)學(xué)學(xué)習(xí)方法歸納總結(jié)大全09-13

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-20

      語(yǔ)文《背影》知識(shí)點(diǎn)總結(jié)歸納12-07

      高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)08-09

      高一數(shù)學(xué)學(xué)習(xí)方法歸納08-03

      《觀潮》知識(shí)點(diǎn)歸納09-01

      《雨巷》高一語(yǔ)文課本知識(shí)點(diǎn)歸納12-27

      高一數(shù)學(xué)學(xué)習(xí)方法歸納(9篇)01-05

      高一數(shù)學(xué)學(xué)習(xí)方法歸納9篇01-05

      高一數(shù)學(xué)學(xué)習(xí)方法歸納7篇12-31