在线视频国产欧美另类,偷拍亚洲一区一区二区三区,日韩中文字幕在线视频,日本精品久久久久中文字幕

<small id="qpqhz"></small>
  • <legend id="qpqhz"></legend>

      <td id="qpqhz"><strong id="qpqhz"></strong></td>
      <small id="qpqhz"><menuitem id="qpqhz"></menuitem></small>
    1. 高一數(shù)學(xué)必修一知識點必背難點總結(jié)

      時間:2021-08-03 18:10:21 總結(jié) 我要投稿

      高一數(shù)學(xué)必修一知識點必背難點總結(jié)5篇

        總結(jié)是對某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗或情況進(jìn)行分析研究的書面材料,他能夠提升我們的書面表達(dá)能力,因此我們需要回頭歸納,寫一份總結(jié)了。總結(jié)怎么寫才能發(fā)揮它的作用呢?下面是小編精心整理的高一數(shù)學(xué)必修一知識點必背難點總結(jié)5篇,僅供參考,大家一起來看看吧。

      高一數(shù)學(xué)必修一知識點必背難點總結(jié)5篇

      高一數(shù)學(xué)必修一知識點必背難點總結(jié)5篇1

        集合間的基本關(guān)系

        1.“包含”關(guān)系—子集

        注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

        2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

        實例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同”

        結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

        A?① 任何一個集合是它本身的子集。A

        B那就說集合A是集合B的真子集,記作A B(或B A)?B,且A?②真子集:如果A

        C?C ,那么 A?B, B?③如果 A

        A 那么A=B?B 同時 B?④ 如果A

        3. 不含任何元素的集合叫做空集,記為Φ

        規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

        集合的運算

        1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

        記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

        2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

        3、交集與并集的性質(zhì):A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.

        4、全集與補(bǔ)集

        (1)補(bǔ)集:設(shè)S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

        A}?S且 x? x?記作: CSA 即 CSA ={x

        (2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

        (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

      高一數(shù)學(xué)必修一知識點必背難點總結(jié)5篇2

        I.定義與定義表達(dá)式

        一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

        (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

        則稱y為x的二次函數(shù)。

        二次函數(shù)表達(dá)式的右邊通常為二次三項式。

        II.二次函數(shù)的三種表達(dá)式

        一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

        頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]

        交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]

        注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

        h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

        III.二次函數(shù)的圖像

        在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

        IV.拋物線的性質(zhì)

        1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。對稱軸與拋物線的交點為拋物線的頂點P。

        特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)

        2.拋物線有一個頂點P,坐標(biāo)為

        P(-b/2a,(4ac-b^2)/4a)

        當(dāng)-b/2a=0時,P在y軸上;當(dāng)Δ=b^2-4ac=0時,P在x軸上。

        3.二次項系數(shù)a決定拋物線的開口方向和大小。

        當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。

        |a|越大,則拋物線的開口越小。

      高一數(shù)學(xué)必修一知識點必背難點總結(jié)5篇3

        1.函數(shù)的奇偶性

        (1)若f(x)是偶函數(shù),那么f(x)=f(-x);

        (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

        (3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);

        (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;

        (5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

        2.復(fù)合函數(shù)的有關(guān)問題

        (1)復(fù)合函數(shù)定義域求法:若已知的定義域為[a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

        (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

        3.函數(shù)圖像(或方程曲線的對稱性)

        (1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上;

        (2)證明圖像C1與C2的對稱性,即證明C1上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

        (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

        (4)曲線C1:f(x,y)=0關(guān)于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

        (5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱,高中數(shù)學(xué);

        (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對稱;

      高一數(shù)學(xué)必修一知識點必背難點總結(jié)5篇4

        【基本初等函數(shù)】

        一、指數(shù)函數(shù)

        (一)指數(shù)與指數(shù)冪的運算

        1.根式的概念:一般地,如果,那么叫做的.次方根(nthroot),其中>1,且∈.

        當(dāng)是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負(fù)數(shù)的次方根是一個負(fù)數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).

        當(dāng)是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負(fù)的次方根用符號-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。

        注意:當(dāng)是奇數(shù)時,當(dāng)是偶數(shù)時,

        2.分?jǐn)?shù)指數(shù)冪

        正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

        0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義

        指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

        3.實數(shù)指數(shù)冪的運算性質(zhì)

        (二)指數(shù)函數(shù)及其性質(zhì)

        1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R.

        注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.

        2、指數(shù)函數(shù)的圖象和性質(zhì)

      高一數(shù)學(xué)必修一知識點必背難點總結(jié)5篇5

        1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標(biāo)及對稱軸如下表:

        解析式

        頂點坐標(biāo)

        對稱軸

        y=ax^2

        (0,0)

        x=0

        y=a(x-h)^2

        (h,0)

        x=h

        y=a(x-h)^2+k

        (h,k)

        x=h

        y=ax^2+bx+c

        (-b/2a,[4ac-b^2]/4a)

        x=-b/2a

        當(dāng)h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

        當(dāng)h<0時,則向左平行移動|h|個單位得到.

        當(dāng)h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;

        當(dāng)h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

        當(dāng)h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

        當(dāng)h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

        因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標(biāo)、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

        2.拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時,開口向上,當(dāng)a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標(biāo)是(-b/2a,[4ac-b^2]/4a).

        3.拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時,y隨x的增大而減小;當(dāng)x≥-b/2a時,y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時,y隨x的增大而增大;當(dāng)x≥-b/2a時,y隨x的增大而減小.

        4.拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點:

        (1)圖象與y軸一定相交,交點坐標(biāo)為(0,c);

        (2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

        (a≠0)的兩根.這兩點間的距離AB=|x?-x?|

        當(dāng)△=0.圖象與x軸只有一個交點;

        當(dāng)△<0.圖象與x軸沒有交點.當(dāng)a>0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當(dāng)a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0.

        5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.

        頂點的橫坐標(biāo),是取得最值時的自變量值,頂點的縱坐標(biāo),是最值的取值.

        6.用待定系數(shù)法求二次函數(shù)的解析式

        (1)當(dāng)題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應(yīng)值時,可設(shè)解析式為一般形式:

        y=ax^2+bx+c(a≠0).

        (2)當(dāng)題給條件為已知圖象的頂點坐標(biāo)或?qū)ΨQ軸時,可設(shè)解析式為頂點式:y=a(x-h)^2+k(a≠0).

        (3)當(dāng)題給條件為已知圖象與x軸的兩個交點坐標(biāo)時,可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

        7.二次函數(shù)知識很容易與其它知識綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn).

      【高一數(shù)學(xué)必修一知識點必背難點總結(jié)5篇】相關(guān)文章:

      高一數(shù)學(xué)必修一知識點總結(jié)08-09

      高一英語必背作文12-01

      高一必背英語作文簡短09-02

      高一政治必修一知識點總結(jié)12-12

      高一物理必修一知識點總結(jié)08-30

      高一語文必修一知識點總結(jié)01-12

      高一語文必修一必寫作文08-28

      高一地理必修一知識點總結(jié)10-11

      高一地理必修一知識點總結(jié)12-12

      高考生物必背知識點11-10