在线视频国产欧美另类,偷拍亚洲一区一区二区三区,日韩中文字幕在线视频,日本精品久久久久中文字幕

<small id="qpqhz"></small>
  • <legend id="qpqhz"></legend>

      <td id="qpqhz"><strong id="qpqhz"></strong></td>
      <small id="qpqhz"><menuitem id="qpqhz"></menuitem></small>
    1. 數(shù)學(xué)必考知識點總結(jié)高

      時間:2021-08-03 15:31:45 總結(jié) 我要投稿

      數(shù)學(xué)必考知識點總結(jié)高三五篇

        總結(jié)是在某一特定時間段對學(xué)習(xí)和工作生活或其完成情況,包括取得的成績、存在的問題及得到的經(jīng)驗和教訓(xùn)加以回顧和分析的書面材料,它在我們的學(xué)習(xí)、工作中起到呈上啟下的作用,讓我們好好寫一份總結(jié)吧?偨Y(jié)怎么寫才是正確的呢?以下是小編精心整理的數(shù)學(xué)必考知識點總結(jié)高三五篇,希望對大家有所幫助。

      數(shù)學(xué)必考知識點總結(jié)高三五篇

      數(shù)學(xué)必考知識點總結(jié)高三五篇1

        不等式的解集:

       、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。

       、谝粋含有未知數(shù)的不等式的所有解,組成這個不等式的解集。

        ③求不等式解集的過程叫做解不等式。

        不等式的判定:

        ①常見的不等號有“>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

       、谠诓坏仁健癮>b”或“a

       、鄄坏忍柕拈_口所對的數(shù)較大,不等號的尖頭所對的數(shù)較小;

       、茉诹胁坏仁綍r,一定要注意不等式關(guān)系的關(guān)鍵字,如:正數(shù)、非負(fù)數(shù)、不大于、小于等等。

      數(shù)學(xué)必考知識點總結(jié)高三五篇2

        1、集合的概念

        集合是數(shù)學(xué)中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對象集合在一起就稱為一個集合。組成集合的對象叫元素,集合通常用大寫字母A、B、C、…來表示。元素常用小寫字母a、b、c、…來表示。

        集合是一個確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個集合。

        2、元素與集合的關(guān)系元素與集合的關(guān)系有屬于和不屬于兩種:

        元素a屬于集合A,記做a∈A;元素a不屬于集合A,記做a?A。

        3、集合中元素的特性

        (1)確定性:設(shè)A是一個給定的集合,x是某一具體對象,則x或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。

        (2)互異性:“集合張的元素必須是互異的”,就是說“對于一個給定的集合,它的任何兩個元素都是不同的”。

        (3)無序性:集合與其中元素的排列次序無關(guān),如集合{a,b,c}與集合{c,b,a}是同一個集合。

        4、集合的分類

        集合科根據(jù)他含有的元素個數(shù)的多少分為兩類:

        有限集:含有有限個元素的集合。如“方程3x+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個數(shù)是可數(shù)的,因此兩個集合是有限集。

        無限集:含有無限個元素的集合,如“到平面上兩個定點的距離相等于所有點”“所有的三角形”,組成上述集合的元素不可數(shù)的.,因此他們是無限集。

        特別的,我們把不含有任何元素的集合叫做空集,記錯F,如{x?R|+1=0}。

        5、特定的集合的表示

        為了書寫方便,我們規(guī)定常見的數(shù)集用特定的字母表示,下面是幾種常見的數(shù)集表示方法,請牢記。

        (1)全體非負(fù)整數(shù)的集合通常簡稱非負(fù)整數(shù)集(或自然數(shù)集),記做N。

        (2)非負(fù)整數(shù)集內(nèi)排出0的集合,也稱正整數(shù)集,記做N_或N+。

        (3)全體整數(shù)的集合通常簡稱為整數(shù)集Z。

        (4)全體有理數(shù)的集合通常簡稱為有理數(shù)集,記做Q。

        (5)全體實數(shù)的集合通常簡稱為實數(shù)集,記做R。

      數(shù)學(xué)必考知識點總結(jié)高三五篇3

        1.不等式的定義

        在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號連接兩個數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號的式子,叫做不等式.

        2.比較兩個實數(shù)的大小

        兩個實數(shù)的大小是用實數(shù)的運算性質(zhì)來定義的,

        有a-b>0?;a-b=0?;a-b<0?.

        另外,若b>0,則有>1?;=1?;<1?.

        概括為:作差法,作商法,中間量法等.

        3.不等式的性質(zhì)

        (1)對稱性:a>b?;

        (2)傳遞性:a>b,b>c?;

        (3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

        (4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

        (5)可乘方:a>b>0?(n∈N,n≥2);

        (6)可開方:a>b>0?(n∈N,n≥2).

        復(fù)習(xí)指導(dǎo)

        1.“一個技巧”作差法變形的技巧:作差法中變形是關(guān)鍵,常進行因式分解或配方.

        2.“一種方法”待定系數(shù)法:求代數(shù)式的范圍時,先用已知的代數(shù)式表示目標(biāo)式,再利用多項式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標(biāo)式的范圍.

        3.“兩條常用性質(zhì)”

        (1)倒數(shù)性質(zhì):①a>b,ab>0?<;②a<0

        ③a>b>0,0;④0

        (2)若a>b>0,m>0,則

       、僬娣?jǐn)?shù)的性質(zhì):<;>(b-m>0);

      數(shù)學(xué)必考知識點總結(jié)高三五篇4

        任一x?A,x?B,記做AB

        AB,BAA=B

        AB={x|x?A,且x?B}

        AB={x|x?A,或x?B}

        Card(AB)=card(A)+card(B)-card(AB)

        (1)命題

        原命題若p則q

        逆命題若q則p

        否命題若p則q

        逆否命題若q,則p

        (2)AB,A是B成立的充分條件

        BA,A是B成立的必要條件

        AB,A是B成立的充要條件

        1.集合元素具有①確定性;②互異性;③無序性

        2.集合表示方法①列舉法;②描述法;③韋恩圖;④數(shù)軸法

        (3)集合的運算

       、貯∩(B∪C)=(A∩B)∪(A∩C)

       、贑u(A∩B)=CuA∪CuB

        Cu(A∪B)=CuA∩CuB

        (4)集合的性質(zhì)

        n元集合的字集數(shù):2n

        真子集數(shù):2n-1;

        非空真子集數(shù):2n-2

      數(shù)學(xué)必考知識點總結(jié)高三五篇5

        復(fù)數(shù)的概念:

        形如a+bi(a,b∈R)的數(shù)叫復(fù)數(shù),其中i叫做虛數(shù)單位。全體復(fù)數(shù)所成的集合叫做復(fù)數(shù)集,用字母C表示。

        復(fù)數(shù)的表示:

        復(fù)數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復(fù)數(shù)的代數(shù)形式,其中a叫復(fù)數(shù)的實部,b叫復(fù)數(shù)的虛部。

        復(fù)數(shù)的幾何意義:

        (1)復(fù)平面、實軸、虛軸:

        點Z的橫坐標(biāo)是a,縱坐標(biāo)是b,復(fù)數(shù)z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標(biāo)系來表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù)

        (2)復(fù)數(shù)的幾何意義:復(fù)數(shù)集C和復(fù)平面內(nèi)所有的點所成的集合是一一對應(yīng)關(guān)系,即

        這是因為,每一個復(fù)數(shù)有復(fù)平面內(nèi)惟一的一個點和它對應(yīng);反過來,復(fù)平面內(nèi)的每一個點,有惟一的一個復(fù)數(shù)和它對應(yīng)。

        這就是復(fù)數(shù)的一種幾何意義,也就是復(fù)數(shù)的另一種表示方法,即幾何表示方法。

        復(fù)數(shù)的模:

        復(fù)數(shù)z=a+bi(a、b∈R)在復(fù)平面上對應(yīng)的點Z(a,b)到原點的距離叫復(fù)數(shù)的模,記為|Z|,即|Z|=

        虛數(shù)單位i:

        (1)它的平方等于-1,即i2=-1;

        (2)實數(shù)可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立

        (3)i與-1的關(guān)系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。

        (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

        復(fù)數(shù)模的性質(zhì):

        復(fù)數(shù)與實數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:

        對于復(fù)數(shù)a+bi(a、b∈R),當(dāng)且僅當(dāng)b=0時,復(fù)數(shù)a+bi(a、b∈R)是實數(shù)a;當(dāng)b≠0時,復(fù)數(shù)z=a+bi叫做虛數(shù);當(dāng)a=0且b≠0時,z=bi叫做純虛數(shù);當(dāng)且僅當(dāng)a=b=0時,z就是實數(shù)0。

      【數(shù)學(xué)必考知識點總結(jié)高三五篇】相關(guān)文章:

      紅樓夢必考知識點總結(jié)12-08

      證券從業(yè)資格考試必考知識點09-26

      高考數(shù)學(xué)知識點總結(jié)09-03

      小升初100個語文課外必考知識點12-17

      高一數(shù)學(xué)知識點總結(jié)07-20

      高一數(shù)學(xué)必修一知識點總結(jié)08-09

      高中數(shù)學(xué)必修四知識點總結(jié)12-03

      小升初語文必考近義詞12-15

      高考必考英語作文01-06

      中考必考英語作文04-14