在线视频国产欧美另类,偷拍亚洲一区一区二区三区,日韩中文字幕在线视频,日本精品久久久久中文字幕

<small id="qpqhz"></small>
  • <legend id="qpqhz"></legend>

      <td id="qpqhz"><strong id="qpqhz"></strong></td>
      <small id="qpqhz"><menuitem id="qpqhz"></menuitem></small>
    1. 高一數(shù)學(xué)課本下冊知識點歸納

      時間:2021-08-03 12:44:39 總結(jié) 我要投稿

      高一數(shù)學(xué)課本下冊知識點歸納

      高一數(shù)學(xué)課本下冊知識點歸納1

        集合的運算

      高一數(shù)學(xué)課本下冊知識點歸納

        1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

        記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

        2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

        3、交集與并集的性質(zhì):A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,

        A∪φ=A,A∪B=B∪A.

        4、全集與補集

        (1)補集:設(shè)S是一個集合,A是S的一個子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

        記作:CSA即CSA={x?x?S且x?A}

        (2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

        (3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U

      高一數(shù)學(xué)課本下冊知識點歸納2

        定義:

        x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。

        范圍:

        傾斜角的取值范圍是0°≤α<180°。

        理解:

        (1)注意“兩個方向”:直線向上的方向、x軸的正方向;

        (2)規(guī)定當(dāng)直線和x軸平行或重合時,它的傾斜角為0度。

        意義:

        ①直線的傾斜角,體現(xiàn)了直線對x軸正向的傾斜程度;

       、谠谄矫嬷苯亲鴺(biāo)系中,每一條直線都有一個確定的傾斜角;

        ③傾斜角相同,未必表示同一條直線。

        公式:

        k=tanα

        k>0時α∈(0°,90°)

        k<0時α∈(90°,180°)

        k=0時α=0°

        當(dāng)α=90°時k不存在

        ax+by+c=0(a≠0)傾斜角為A,

        則tanA=-a/b,

        A=arctan(-a/b)

        當(dāng)a≠0時,

        傾斜角為90度,即與X軸垂直

        高一數(shù)學(xué)課本下冊知識點歸納

      高一數(shù)學(xué)課本下冊知識點歸納3

        函數(shù)圖象知識歸納

        (1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點P(x,y)的函數(shù)C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(x,y),均在C上.

        (2)畫法

        A、描點法:

        B、圖象變換法

        常用變換方法有三種

        1)平移變換

        2)伸縮變換

        3)對稱變換

        4.高中數(shù)學(xué)函數(shù)區(qū)間的概念

        (1)函數(shù)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

        (2)無窮區(qū)間

        5.映射

        一般地,設(shè)A、B是兩個非空的函數(shù),如果按某一個確定的對應(yīng)法則f,使對于函數(shù)A中的任意一個元素x,在函數(shù)B中都有確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從函數(shù)A到函數(shù)B的一個映射。記作“f(對應(yīng)關(guān)系):A(原象)B(象)”

        對于映射f:A→B來說,則應(yīng)滿足:

        (1)函數(shù)A中的每一個元素,在函數(shù)B中都有象,并且象是的;

        (2)函數(shù)A中不同的元素,在函數(shù)B中對應(yīng)的象可以是同一個;

        (3)不要求函數(shù)B中的每一個元素在函數(shù)A中都有原象。

        6.高中數(shù)學(xué)函數(shù)之分段函數(shù)

        (1)在定義域的不同部分上有不同的解析表達式的函數(shù)。

        (2)各部分的自變量的取值情況.

        (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

        補充:復(fù)合函數(shù)

        如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復(fù)合函數(shù)。

      高一數(shù)學(xué)課本下冊知識點歸納4

        復(fù)數(shù)定義

        我們把形如a+bi(a,b均為實數(shù))的數(shù)稱為復(fù)數(shù),其中a稱為實部,b稱為虛部,i稱為虛數(shù)單位。當(dāng)虛部等于零時,這個復(fù)數(shù)可以視為實數(shù);當(dāng)z的虛部不等于零時,實部等于零時,常稱z為純虛數(shù)。復(fù)數(shù)域是實數(shù)域的代數(shù)閉包,也即任何復(fù)系數(shù)多項式在復(fù)數(shù)域中總有根。

        復(fù)數(shù)表達式

        虛數(shù)是與任何事物沒有聯(lián)系的,是絕對的,所以符合的表達式為:

        a=a+ia為實部,i為虛部

        復(fù)數(shù)運算法則

        加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i;

        減法法則:(a+bi)-(c+di)=(a-c)+(b-d)i;

        乘法法則:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;

        除法法則:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.

        例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最終結(jié)果還是0,也就在數(shù)字中沒有復(fù)數(shù)的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一個函數(shù)。

        復(fù)數(shù)與幾何

       、賻缀涡问

        復(fù)數(shù)z=a+bi被復(fù)平面上的'點z(a,b)確定。這種形式使復(fù)數(shù)的問題可以借助圖形來研究。也可反過來用復(fù)數(shù)的理論解決一些幾何問題。

       、谙蛄啃问

        復(fù)數(shù)z=a+bi用一個以原點O(0,0)為起點,點Z(a,b)為終點的向量OZ表示。這種形式使復(fù)數(shù)四則運算得到恰當(dāng)?shù)膸缀谓忉尅?/p>

       、廴切问

        復(fù)數(shù)z=a+bi化為三角形式

      高一數(shù)學(xué)課本下冊知識點歸納5

        對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

        首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負整數(shù)時,設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:

        排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

        排除了為0這種可能,即對于x<0和x>0的所有實數(shù),q不能是偶數(shù);

        排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。

        總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);

        如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。

        在x大于0時,函數(shù)的值域總是大于0的實數(shù)。

        在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。

        而只有a為正數(shù),0才進入函數(shù)的值域。

        由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.

        可以看到:

        (1)所有的圖形都通過(1,1)這點。

        (2)當(dāng)a大于0時,冪函數(shù)為單調(diào)遞增的,而a小于0時,冪函數(shù)為單調(diào)遞減函數(shù)。

        (3)當(dāng)a大于1時,冪函數(shù)圖形下凹;當(dāng)a小于1大于0時,冪函數(shù)圖形上凸。

        (4)當(dāng)a小于0時,a越小,圖形傾斜程度越大。

        (5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點。

        (6)顯然冪函數(shù)無界。

      【高一數(shù)學(xué)課本下冊知識點歸納】相關(guān)文章:

      《雨巷》高一語文課本知識點歸納12-27

      高一數(shù)學(xué)學(xué)習(xí)方法歸納08-03

      《觀潮》知識點歸納09-01

      高一語文課本作文10-05

      高一數(shù)學(xué)學(xué)習(xí)方法歸納9篇01-05

      高一數(shù)學(xué)學(xué)習(xí)方法歸納7篇12-31

      高一數(shù)學(xué)學(xué)習(xí)方法歸納(9篇)01-05

      高一數(shù)學(xué)知識點總結(jié)07-20

      《觀滄!分R點歸納11-07

      采薇知識點歸納09-02