在线视频国产欧美另类,偷拍亚洲一区一区二区三区,日韩中文字幕在线视频,日本精品久久久久中文字幕

<small id="qpqhz"></small>
  • <legend id="qpqhz"></legend>

      <td id="qpqhz"><strong id="qpqhz"></strong></td>
      <small id="qpqhz"><menuitem id="qpqhz"></menuitem></small>
    1. 初中數(shù)學(xué)知識點(diǎn)總結(jié)歸納

      時間:2025-03-24 06:59:43 知識點(diǎn)總結(jié) 我要投稿

      初中數(shù)學(xué)知識點(diǎn)總結(jié)歸納(集合)

        總結(jié)就是對一個時期的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的回顧和分析的書面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,為此我們要做好回顧,寫好總結(jié)。如何把總結(jié)做到重點(diǎn)突出呢?以下是小編精心整理的初中數(shù)學(xué)知識點(diǎn)總結(jié)歸納,歡迎閱讀與收藏。

      初中數(shù)學(xué)知識點(diǎn)總結(jié)歸納(集合)

      初中數(shù)學(xué)知識點(diǎn)總結(jié)歸納1

        一元一次方程定義

        通過化簡,只含有一個未知數(shù),且含有未知數(shù)的最高次項的次數(shù)是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b為常數(shù),且a≠0)。一元一次方程屬于整式方程,即方程兩邊都是整式。

        一元指方程僅含有一個未知數(shù),一次指未知數(shù)的次數(shù)為1,且未知數(shù)的系數(shù)不為0。我們將ax+b=0(其中x是未知數(shù),a、b是已知數(shù),并且a≠0)叫一元一次方程的標(biāo)準(zhǔn)形式。這里a是未知數(shù)的系數(shù),b是常數(shù),x的次數(shù)必須是1。

        即一元一次方程必須同時滿足4個條件:⑴它是等式;⑵分母中不含有未知數(shù);⑶未知數(shù)最高次項為1;⑷含未知數(shù)的項的系數(shù)不為0。

        一元一次方程的五個核心問題

        一、什么是等式?1+1=1是等式嗎?

        表示相等關(guān)系的式子叫做等式,等式可分三類:第一類是恒等式,就是用任何允許的數(shù)值代替等式中的字母,等式的兩邊總是相等,由數(shù)字組成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二類是條件等式,也就是方程,這類等式只能取某些數(shù)值代替等式中的字母時,等式才成立,如x+y=-5,x+4=7等都是條件等式;第三類是矛盾等式,就是無論用任何值代替等式中的字母,等式總不成立,如x2=-2,|a|+5=0等。

        一個等式中,如果等號多于一個,叫做連等式,連等式可以化為一組只含有一個等號的等式。

        等式與代數(shù)式不同,等式中含有等號,代數(shù)式中不含等號。

        等式有兩個重要性質(zhì)1)等式的兩邊都加上或減去同一個數(shù)或同一個整式,所得結(jié)果仍然是一個等式;(2)等式的兩邊都乘以或除以同一個數(shù)除數(shù)不為零,所得結(jié)果仍然是一個等式。

        二、什么是方程,什么是一元一次方程?

        含有未知數(shù)的等式叫做方程,如2x-3=8,x+y=7等。判斷一個式子是否是方程,只需看兩點(diǎn):一是不是等式;二是否含有未知數(shù),兩者缺一不可。

        只含有一個未知數(shù),并且含未知數(shù)的式子都是整式,未知數(shù)的次數(shù)是1,系數(shù)不是0的方程叫做一元一次方程。其標(biāo)準(zhǔn)形式是ax+b=0(a不為0,a,b是已知數(shù)),值得注意的是1)一個整式方程的"元"和"次"是將這個方程化成最簡形式后才能判定的.。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化簡后,它實(shí)際上是一個一元一次方程。(2)整式方程分母中不含有未知數(shù)。判斷是否為整式方程,是不能先將它化簡的如方程x+1/x=2+1/x,因為它的分母中含有未知數(shù)x,所以,它不是整式方程。如果將上面的方程進(jìn)行化簡,則為x=2,這時再去作判斷,將得到錯誤的結(jié)論。

        凡是談到次數(shù)的方程,都是指整式方程,即方程的兩邊都是整式。一元一次方程是整式方程中元數(shù)最少且次數(shù)最低的方程。

        三、等式有什么牛掰的基本性質(zhì)嗎?

        將方程中的某些項改變符號后,從方程的一邊移到另一邊的變形叫做移項,移項的依據(jù)是等式的基本性質(zhì)1。

        移項時不一定要把含未知數(shù)的項移到等式的左邊。如解方程3x-2=4x-5時就可以把含未知數(shù)的項移到右邊,而把常數(shù)項移到左邊,這樣會顯得簡便些。

        去分母,將未知數(shù)的系數(shù)化為1,則是依據(jù)等式的基本性質(zhì)2進(jìn)行的。

        四、等式一定是方程嗎?方程一定是等式嗎?

        等式與方程有很多相同之處。如都是用等號連接的,等號左、右兩邊都是代數(shù)式,但它們還是有區(qū)別的。方程僅是含有未知數(shù)的等式,是等式中的特例。就是說,等式包含方程;反過來,方程并不包含所有的等式。如,13+5=18,18-13=5都屬于等式,但它們并不是方程。因此,等式一定是方程的說法是不對的。

        五、"解方程"與"方程的解"是一回事兒嗎?

        方程的解是使方程左、右兩邊相等的未知數(shù)的取值。而解方程是求方程的解或判斷方程無解的過程。即方程的解是結(jié)果,而解方程是一個過程。方程的解中的"解"是名詞,而解方程中的"解"是動詞,二者不能混淆。

      初中數(shù)學(xué)知識點(diǎn)總結(jié)歸納2

        1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。

        2、菱形的性質(zhì):⑴矩形具有平行四邊形的一切性質(zhì);

       、屏庑蔚乃臈l邊都相等;

       、橇庑蔚膬蓷l對角線互相垂直,并且每一條對角線平分一組對角。

       、攘庑问禽S對稱圖形。

        提示:利用菱形的性質(zhì)可證得線段相等、角相等,它的對角線互相垂直且把菱形分成四個全等的直角三角形,由此又可與勾股定理聯(lián)系,可得對角線與邊之間的關(guān)系,即邊長的平方等于對角線一半的平方和。

        3、因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

        4、因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④因式分解與整式乘法的關(guān)系:m(a+b+c)

        5、公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

        6、公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

        7、提取公因式步驟:①確定公因式。②確定商式③公因式與商式寫成積的形式。

        8、平方根表示法:一個非負(fù)數(shù)a的平方根記作,讀作正負(fù)根號a。a叫被開方數(shù)。

        9、中被開方數(shù)的取值范圍:被開方數(shù)a≥0

        10、平方根性質(zhì):①一個正數(shù)的平方根有兩個,它們互為相反數(shù)。②0的平方根是它本身0。③負(fù)數(shù)沒有平方根開平方;求一個數(shù)的平方根的運(yùn)算,叫做開平方。

        11、平方根與算術(shù)平方根區(qū)別:定義不同、表示方法不同、個數(shù)不同、取值范圍不同。

        12、聯(lián)系:二者之間存在著從屬關(guān)系;存在條件相同;0的算術(shù)平方根與平方根都是0

        13、含根號式子的意義:表示a的平方根,表示a的`算術(shù)平方根,表示a的負(fù)的平方根。

        14、求正數(shù)a的算術(shù)平方根的方法;

        完全平方數(shù)類型:①想誰的平方是數(shù)a。②所以a的平方根是多少。③用式子表示。

        求正數(shù)a的算術(shù)平方根,只需找出平方后等于a的正數(shù)。

      初中數(shù)學(xué)知識點(diǎn)總結(jié)歸納3

        1、一元二次方程解法:

        (1)配方法:(X±a)=b(b≥0)注:二次項系數(shù)必須化為1

        (2)公式法:aX+bX+C=0(a≠0)確定a,b,c的值,計算b-4ac≥0

        若b-4ac>0則有兩個不相等的.實(shí)根,若b-4ac=0則有兩個相等的實(shí)根,若b-4ac<0則無解

        若b-4ac≥0則用公式X=-b±√b-4ac/2a注:必須化為一般形式

        (3)分解因式法

       、偬峁蚴椒ǎ簃a+mb=0→m(a+b)=0

        平方差公式:a-b=0→(a+b)(a-b)=0

        ②運(yùn)用公式法:

        完全平方公式:a±2ab+b=0→(a±b)=0

       、凼窒喑朔

        2、銳角三角函數(shù)定義

        銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。

        正弦(sin):對邊比斜邊,即sinA=a/c;

        余弦(cos):鄰邊比斜邊,即cosA=b/c;

        正切(tan):對邊比鄰邊,即tanA=a/b;

        余切(cot):鄰邊比對邊,即cotA=b/a;

        3、積的關(guān)系

        sinα=tanα·cosα

        cosα=cotα·sinα

        tanα=sinα·secα

        cotα=cosα·cscα

        secα=tanα·cscα

        cscα=secα·cotα

        4、倒數(shù)關(guān)系

        tanα·cotα=1

        sinα·cscα=1

        cosα·secα=1

        5、兩角和差公式

        sin(A+B) = sinAcosB+cosAsinB

        sin(A-B) = sinAcosB-cosAsinB

        cos(A+B) = cosAcosB-sinAsinB

        cos(A-B) = cosAcosB+sinAsinB

        tan(A+B) = (tanA+tanB)/(1-tanAtanB)

        tan(A-B) = (tanA-tanB)/(1+tanAtanB)

        cot(A+B) = (cotAcotB-1)/(cotB+cotA)

        cot(A-B) = (cotAcotB+1)/(cotB-cotA)

      【初中數(shù)學(xué)知識點(diǎn)總結(jié)歸納】相關(guān)文章:

      初中數(shù)學(xué)圓的知識點(diǎn)歸納總結(jié)06-16

      初中數(shù)學(xué)知識點(diǎn)總結(jié)歸納07-01

      初中數(shù)學(xué)知識點(diǎn)總結(jié)歸納03-08

      初中數(shù)學(xué)知識點(diǎn)歸納總結(jié)03-07

      初中數(shù)學(xué)知識點(diǎn)總結(jié)歸納06-08

      初中物理知識點(diǎn)總結(jié)歸納06-09

      初中幾何知識點(diǎn)總結(jié)歸納05-14

      初中數(shù)學(xué)歸納總結(jié)通用08-20

      初中數(shù)學(xué)考點(diǎn)歸納總結(jié)07-08

      小學(xué)數(shù)學(xué)知識點(diǎn)總結(jié)歸納12-09