在线视频国产欧美另类,偷拍亚洲一区一区二区三区,日韩中文字幕在线视频,日本精品久久久久中文字幕

<small id="qpqhz"></small>
  • <legend id="qpqhz"></legend>

      <td id="qpqhz"><strong id="qpqhz"></strong></td>
      <small id="qpqhz"><menuitem id="qpqhz"></menuitem></small>
    1. 初中數(shù)學必背知識點總結

      時間:2025-03-03 12:47:13 知識點總結 我要投稿
      • 相關推薦

      初中數(shù)學必背知識點總結(通用9篇)

        在平凡的學習生活中,不管我們學什么,都需要掌握一些知識點,知識點是指某個模塊知識的重點、核心內容、關鍵部分。相信很多人都在為知識點發(fā)愁,下面是小編精心整理的初中數(shù)學必背知識點總結,歡迎大家分享。

      初中數(shù)學必背知識點總結(通用9篇)

        初中數(shù)學必背知識點總結 1

        1、重心的定義:平面圖形中,幾何圖形的重心是當支撐或懸掛時圖形能在水平面處于平衡狀態(tài),此時的支撐點或者懸掛點叫做平衡點,也叫做重心。

        2、幾種幾何圖形的重心:

       、啪段的重心就是線段的中點;

       、破叫兴倪呅渭疤厥馄叫兴倪呅蔚闹匦氖撬膬蓷l對角線的交點;

       、侨切蔚娜龡l中線交于一點,這一點就是三角形的重心;

       、热我舛噙呅味加兄匦模远噙呅蔚娜我鈨蓚頂點作為懸掛點,把多邊形懸掛時,過這兩點鉛垂線的交點就是這個多邊形的重心。

        提示:

       、艧o論幾何圖形的`形狀如何,重心都有且只有一個;

       、茝奈锢韺W角度看,幾何圖形在懸掛或支撐時,位于重心兩邊的力矩相同。

        3、常見圖形重心的性質:

       、啪段的重心把線段分為兩等份;

       、破叫兴倪呅蔚闹匦陌褜蔷分為兩等份;

       、侨切蔚闹匦陌阎芯分為1:2兩部分(重心到頂點距離占2份,重心到對邊中點距離占1份)。

        上面對重心知識點的鞏固學習,同學們都能熟練的掌握了吧,希望同學們很好的復習學習數(shù)學知識。

        初中數(shù)學必背知識點總結 2

        平面直角坐標系:

        在平面內畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。

        水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

        平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合

        三個規(guī)定:

       、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

       、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

        ③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

        平面直角坐標系的構成

        在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的`原點。

        點的坐標的性質

        建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。

        對于平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數(shù)對(a,b)叫做點C的坐標。

        一個點在不同的象限或坐標軸上,點的坐標不一樣。

        初中數(shù)學必背知識點總結 3

        1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。

        2、菱形的性質:

       、啪匦尉哂衅叫兴倪呅蔚囊磺行再|;

       、屏庑蔚乃臈l邊都相等;

       、橇庑蔚膬蓷l對角線互相垂直,并且每一條對角線平分一組對角。

       、攘庑问禽S對稱圖形。

        提示:利用菱形的性質可證得線段相等、角相等,它的對角線互相垂直且把菱形分成四個全等的.直角三角形,由此又可與勾股定理聯(lián)系,可得對角線與邊之間的關系,即邊長的平方等于對角線一半的平方和。

        3、因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

        4、因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④因式分解與整式乘法的關系:m(a+b+c)

        5、公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

        6、公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

        7、提取公因式步驟:①確定公因式。②確定商式③公因式與商式寫成積的形式。

        8、平方根表示法:一個非負數(shù)a的平方根記作,讀作正負根號a。a叫被開方數(shù)。

        9、中被開方數(shù)的取值范圍:被開方數(shù)a≥0

        10、平方根性質:①一個正數(shù)的平方根有兩個,它們互為相反數(shù)。②0的平方根是它本身0。③負數(shù)沒有平方根開平方;求一個數(shù)的平方根的運算,叫做開平方。

        11、平方根與算術平方根區(qū)別:定義不同、表示方法不同、個數(shù)不同、取值范圍不同。

        12、聯(lián)系:二者之間存在著從屬關系;存在條件相同;0的算術平方根與平方根都是0

        13、含根號式子的意義:表示a的平方根,表示a的算術平方根,表示a的負的平方根。

        14、求正數(shù)a的算術平方根的方法;

        完全平方數(shù)類型:①想誰的平方是數(shù)a。②所以a的平方根是多少。③用式子表示。

        求正數(shù)a的算術平方根,只需找出平方后等于a的正數(shù)。

        初中數(shù)學必背知識點總結 4

        一、平移變換:

        1、概念:在平面內,將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移。

        2、性質:

       。1)平移前后圖形全等;

       。2)對應點連線平行或在同一直線上且相等。

        3、平移的作圖步驟和方法:

        (1)分清題目要求,確定平移的方向和平移的距離;

       。2)分析所作的圖形,找出構成圖形的關健點;

       。3)沿一定的方向,按一定的距離平移各個關健點;

        (4)連接所作的各個關鍵點,并標上相應的字母;

       。5)寫出結論。

        二、旋轉變換:

        1、概念:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動叫做旋轉。

        說明:

        (1)圖形的旋轉是由旋轉中心和旋轉的角度所決定的;

       。2)旋轉過程中旋轉中心始終保持不動。

       。3)旋轉過程中旋轉的'方向是相同的。

       。4)旋轉過程靜止時,圖形上一個點的旋轉角度是一樣的。⑤旋轉不改變圖形的大小和形狀。

        2、性質:

        (1)對應點到旋轉中心的距離相等;

       。2)對應點與旋轉中心所連線段的夾角等于旋轉角;

       。3)旋轉前、后的圖形全等。

        3、旋轉作圖的步驟和方法:

       。1)確定旋轉中心及旋轉方向、旋轉角;

        (2)找出圖形的關鍵點;

       。3)將圖形的關鍵點和旋轉中心連接起來,然后按旋轉方向分別將它們旋轉一個旋轉角度數(shù),得到這些關鍵點的對應點;

       。4)按原圖形順次連接這些對應點,所得到的圖形就是旋轉后的圖形。

        說明:在旋轉作圖時,一對對應點與旋轉中心的夾角即為旋轉角。

        常見考法

       。1)把平移旋轉結合起來證明三角形全等;

        (2)利用平移變換與旋轉變換的性質,設計一些題目。

        誤區(qū)提醒

       。1)弄反了坐標平移的上加下減,左減右加的規(guī)律;

       。2)平移與旋轉的性質沒有掌握。

        初中數(shù)學必背知識點總結 5

        動點與函數(shù)圖象問題常見的四種類型:

        1、三角形中的動點問題:動點沿三角形的邊運動,根據(jù)問題中的常量與變量之間的關系,判斷函數(shù)圖象

        2、四邊形中的動點問題:動點沿四邊形的邊運動,根據(jù)問題中的常量與變量之間的關系,判斷函數(shù)圖象

        3、圓中的動點問題:動點沿圓周運動,根據(jù)問題中的常量與變量之間的關系,判斷函數(shù)圖象

        4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,根據(jù)問題中的常量與變量之間的關系,判斷函數(shù)圖象

        圖形運動與函數(shù)圖象問題常見的三種類型:

        1、線段與多邊形的`運動圖形問題:把一條線段沿一定方向運動經(jīng)過三角形或四邊形,根據(jù)問題中的常量與變量之間的關系,進行分段,判斷函數(shù)圖象

        2、多邊形與多邊形的運動圖形問題:把一個三角形或四邊形沿一定方向運動經(jīng)過另一個多邊形,根據(jù)問題中的常量與變量之間的關系,進行分段,判斷函數(shù)圖象

        3、多邊形與圓的運動圖形問題:把一個圓沿一定方向運動經(jīng)過一個三角形或四邊形,或把一個三角形或四邊形沿一定方向運動經(jīng)過一個圓,根據(jù)問題中的常量與變量之間的關系,進行分段,判斷函數(shù)圖象

        動點問題常見的四種類型:

        1、三角形中的動點問題:動點沿三角形的邊運動,通過全等或相似,探究構成的新圖形與原圖形的邊或角的關系

        2、四邊形中的動點問題:動點沿四邊形的邊運動,通過探究構成的新圖形與原圖形的全等或相似,得出它們的邊或角的關系

        3、圓中的動點問題:動點沿圓周運動,探究構成的新圖形的邊角等關系

        4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,探究是否存在動點構成的三角形是等腰三角形或與已知圖形相似等問題

        總結反思:

        本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質,等腰直角三角形的性質,平行線的性質等,數(shù)形結合思想的應用是解題的關鍵

        解答動態(tài)性問題通常是對幾何圖形運動過程有一個完整、清晰的認識,發(fā)掘“動”與“靜”的內在聯(lián)系,尋求變化規(guī)律,從變中求不變,從而達到解題目的

        解答函數(shù)的圖象問題一般遵循的步驟:

        1、根據(jù)自變量的取值范圍對函數(shù)進行分段

        2、求出每段的解析式

        3、由每段的解析式確定每段圖象的形狀

        對于用圖象描述分段函數(shù)的實際問題,要抓住以下幾點:

        1、自變量變化而函數(shù)值不變化的圖象用水平線段表示

        2、自變量變化函數(shù)值也變化的增減變化情況.

        3、函數(shù)圖象的最低點和最高點.

        初中數(shù)學必背知識點總結 6

        一、圓

        1、圓的有關性質

        在一個平面內,線段OA繞它固定的一個端點O旋轉一周,另一個端點A隨之旋轉所形成的圖形叫圓,固定的端點O叫圓心,線段OA叫半徑。

        由圓的意義可知:

        圓上各點到定點(圓心O)的距離等于定長的點都在圓上。

        就是說:圓是到定點的距離等于定長的點的集合,圓的內部可以看作是到圓。心的距離小于半徑的點的集合。

        圓的外部可以看作是到圓心的距離大于半徑的點的集合。連結圓上任意兩點的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點間的部分叫圓弧,簡稱弧。

        圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu);小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。

        圓心相同,半徑不相等的兩個圓叫同心圓。

        能夠重合的兩個圓叫等圓。

        同圓或等圓的半徑相等。

        在同圓或等圓中,能夠互相重合的弧叫等弧。

        二、過三點的圓

        l、過三點的圓

        過三點的圓的作法:利用中垂線找圓心

        定理不在同一直線上的三個點確定一個圓。

        經(jīng)過三角形各頂點的圓叫三角形的外接圓,外接圓的圓心叫外心,這個三角形叫圓的內接三角形。

        2、反證法

        反證法的三個步驟:

        ①假設命題的結論不成立;

        ②從這個假設出發(fā),經(jīng)過推理論證,得出矛盾;

        ③由矛盾得出假設不正確,從而肯定命題的結論正確。

        例如:求證三角形中最多只有一個角是鈍角。

        證明:設有兩個以上是鈍角

        則兩個鈍角之和>180°

        與三角形內角和等于180°矛盾。

        ∴不可能有二個以上是鈍角。

        即最多只能有一個是鈍角。

        三、垂直于弦的直徑

        圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。

        垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

        推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。

        弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。

        平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個條弧。

        推理2:圓兩條平行弦所夾的弧相等。

        四、圓心角、弧、弦、弦心距之間的關系

        圓是以圓心為對稱中心的.中心對稱圖形。

        實際上,圓繞圓心旋轉任意一個角度,都能夠與原來的圖形重合。

        頂點是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。

        定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。

        推理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應的其余各組量都分別相等。

        五、圓周角

        頂點在圓上,并且兩邊都和圓相交的角叫圓周角。

        推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

        推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

        推理3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。

        由于以上的定理、推理,所添加輔助線往往是添加能構成直徑上的圓周角的輔助線。

        初中數(shù)學必背知識點總結 7

        1、正數(shù)和負數(shù)的有關概念

        (1)正數(shù):比0大的數(shù)叫做正數(shù);

        負數(shù):比0小的數(shù)叫做負數(shù);

        0既不是正數(shù),也不是負數(shù)。

        (2)正數(shù)和負數(shù)表示相反意義的量。

        2、有理數(shù)的概念及分類

        3、有關數(shù)軸

        (1)數(shù)軸的三要素:原點、正方向、單位長度。數(shù)軸是一條直線。

        (2)所有有理數(shù)都可以用數(shù)軸上的點來表示,但數(shù)軸上的點不一定都是有理數(shù)。

        (3)數(shù)軸上,右邊的數(shù)總比左邊的數(shù)大;表示正數(shù)的點在原點的右側,表示負數(shù)的點在原點的左側。

        (2)相反數(shù):符號不同、絕對值相等的兩個數(shù)互為相反數(shù)。

        若a、b互為相反數(shù),則a+b=0;

        相反數(shù)是本身的是0,正數(shù)的相反數(shù)是負數(shù),負數(shù)的相反數(shù)是正數(shù)。

        (3)絕對值最小的數(shù)是0;絕對值是本身的數(shù)是非負數(shù)。

        4、任何數(shù)的絕對值是非負數(shù)。

        最小的正整數(shù)是1,最大的`負整數(shù)是-1。

        5、利用絕對值比較大小

        兩個正數(shù)比較:絕對值大的那個數(shù)大;

        兩個負數(shù)比較:先算出它們的絕對值,絕對值大的反而小。

        6、有理數(shù)加法

        (1)符號相同的兩數(shù)相加:和的符號與兩個加數(shù)的符號一致,和的絕對值等于兩個加數(shù)絕對值之和

        (2)符號相反的兩數(shù)相加:當兩個加數(shù)絕對值不等時,和的符號與絕對值較大的加數(shù)的符號相同,和的絕對值等于加數(shù)中較大的絕對值減去較小的絕對值;當兩個加數(shù)絕對值相等時,兩個加數(shù)互為相反數(shù),和為零

        (3)一個數(shù)同零相加,仍得這個數(shù).

        加法的交換律:a+b=b+a

        加法的結合律:(a+b)+c=a+(b+c)

        7、有理數(shù)減法:

        減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

        8、在把有理數(shù)加減混合運算統(tǒng)一為最簡的形式,負數(shù)前面的加號可以省略不寫

        例如:14+12+(-25)+(-17)可以寫成省略括號的形式:14+12-25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負25、負17的和”

        9、有理數(shù)的乘法

        兩個數(shù)相乘,同號得正,異號得負,再把絕對值相乘;任何數(shù)與0相乘都得0。

        第一步:確定積的符號第二步:絕對值相乘

        10、乘積的符號的確定

        幾個有理數(shù)相乘,因數(shù)都不為0時,積的符號由負因數(shù)的個數(shù)確定:當負因數(shù)有奇數(shù)個時,積為負;

        當負因數(shù)有偶數(shù)個時,積為正。幾個有理數(shù)相乘,有一個因數(shù)為零,積就為零。

        11、倒數(shù):

        乘積為1的兩個數(shù)互為倒數(shù),0沒有倒數(shù)。

        正數(shù)的倒數(shù)是正數(shù),負數(shù)的倒數(shù)是負數(shù)。(互為倒數(shù)的兩個數(shù)符號一定相同)

        倒數(shù)是本身的只有1和-1。

        初中數(shù)學必背知識點總結 8

        初中數(shù)學基礎知識點

        平方根:①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術平方根。②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。③一個正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。④求一個數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。

        立方根:①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。③求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。

        實數(shù):①實數(shù)分有理數(shù)和無理數(shù)。②在實數(shù)范圍內,相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內的相反數(shù),倒數(shù),絕對值的意義完全一樣。③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。

        初中數(shù)學平行四邊形的性質知識點

        1.定義:兩組對邊分別平行的四邊形叫平行四邊形

        2.平行四邊形的性質

        (1)平行四邊形的對邊平行且相等;

        (2)平行四邊形的鄰角互補,對角相等;

        (3)平行四邊形的對角線互相平分;

        3.平行四邊形的判定

        平行四邊形是幾何中一個重要內容,如何根據(jù)平行四邊形的性質,判定一個四邊形是平行四邊形是個重點,下面就對平行四邊形的五種判定方法,進行劃分:

        第一類:與四邊形的對邊有關

        (1)兩組對邊分別平行的四邊形是平行四邊形;

        (2)兩組對邊分別相等的四邊形是平行四邊形;

        (3)一組對邊平行且相等的四邊形是平行四邊形;

        第二類:與四邊形的對角有關

        (4)兩組對角分別相等的四邊形是平行四邊形;

        第三類:與四邊形的對角線有關

        (5)對角線互相平分的四邊形是平行四邊形

        初中數(shù)學函數(shù)知識點總結

        1.一次函數(shù)

        (1)定義:形如y=kx+b(k、b是常數(shù),且k≠0)的函數(shù),叫做一次函數(shù)。特別地,當b=0時,y是x的正比例函數(shù)。即:y=kx(k為常數(shù),k≠0)

        所以,正比例函數(shù)是特殊的一次函數(shù)。

        (2)一次函數(shù)的圖像及性質:

        1在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。

        2一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)。

        3正比例函數(shù)的圖像總是過原點。

        4k,b與函數(shù)圖像所在象限的關系:

        當k>0時,y隨x的'增大而增大;當k

        當k>0,b>0時,直線通過一、二、三象限;

        當k>0,b

        當k0時,直線通過一、二、四象限;

        當k

        當b=0時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

        這時,當k>0時,直線只通過一、三象限;當k

        2.二次函數(shù)

        (1)定義:一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c(a,b,c為常數(shù),a≠0,),稱y為x的二次函數(shù)。

        (2)二次函數(shù)的三種表達式

        一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0);

        頂點式:y=a(x-h)^2+k(拋物線的頂點P(h,k));

        交點式:

        (3)二次函數(shù)的圖像與性質

        1二次函數(shù)的圖像是一條拋物線。

        2拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。

        特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)。

        3二次項系數(shù)a決定拋物線的開口方向。

        當a>0時,拋物線向上開口;

        當a

        4一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

        當a與b同號時(即ab>0),對稱軸在y軸左;

        當a與b異號時(即ab

        5拋物線與x軸交點個數(shù)

        Δ=b^2-4ac>0時,拋物線與x軸有2個交點;

        Δ=b^2-4ac=0時,拋物線與x軸有1個交點;

        Δ=b^2-4ac

        3.反比例函數(shù)

        (1)定義:形如y=k/x(k為常數(shù)且k≠0) 的函數(shù),叫做反比例函數(shù)。

        (2)反比例函數(shù)圖像性質:

        1反比例函數(shù)的圖像為雙曲線;

        當K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù);

        當K

        反比例函數(shù)圖像只能無限趨向于坐標軸,無法和坐標軸相交。

        2由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關于原點對稱。

        初中數(shù)學必背知識點總結 9

        三角形的知識點

        1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

        2、三角形的分類

        3、三角形的三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

        4、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

        5、中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

        6、角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

        7、高線、中線、角平分線的意義和做法

        8、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩(wěn)定性。

        9、三角形內角和定理:三角形三個內角的和等于180°

        推論1直角三角形的兩個銳角互余

        推論2三角形的一個外角等于和它不相鄰的兩個內角和

        推論3三角形的一個外角大于任何一個和它不相鄰的內角;三角形的內角和是外角和的一半

        10、三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。

        11、三角形外角的性質

        (1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;

        (2)三角形的一個外角等于與它不相鄰的兩個內角和;

        (3)三角形的一個外角大于與它不相鄰的任一內角;

        (4)三角形的外角和是360°。

        四邊形(含多邊形)知識點、概念總結

        一、平行四邊形的定義、性質及判定

        1、兩組對邊平行的四邊形是平行四邊形。

        2、性質:

        (1)平行四邊形的對邊相等且平行

        (2)平行四邊形的對角相等,鄰角互補

        (3)平行四邊形的對角線互相平分

        3、判定:

        (1)兩組對邊分別平行的四邊形是平行四邊形

        (2)兩組對邊分別相等的四邊形是平行四邊形

        (3)一組對邊平行且相等的四邊形是平行四邊形

        (4)兩組對角分別相等的四邊形是平行四邊形

        (5)對角線互相平分的四邊形是平行四邊形

        4、對稱性:平行四邊形是中心對稱圖形

        二、矩形的定義、性質及判定

        1、定義:有一個角是直角的平行四邊形叫做矩形

        2、性質:矩形的四個角都是直角,矩形的對角線相等

        3、判定:

        (1)有一個角是直角的.平行四邊形叫做矩形

        (2)有三個角是直角的四邊形是矩形

        (3)兩條對角線相等的平行四邊形是矩形

        4、對稱性:矩形是軸對稱圖形也是中心對稱圖形。

        三、菱形的定義、性質及判定

        1、定義:有一組鄰邊相等的平行四邊形叫做菱形

        (1)菱形的四條邊都相等

        (2)菱形的對角線互相垂直,并且每一條對角線平分一組對角

        (3)菱形被兩條對角線分成四個全等的直角三角形

        (4)菱形的面積等于兩條對角線長的積的一半

        2、s菱=爭6(n、6分別為對角線長)

        3、判定:

        (1)有一組鄰邊相等的平行四邊形叫做菱形

        (2)四條邊都相等的四邊形是菱形

        (3)對角線互相垂直的平行四邊形是菱形

        4、對稱性:菱形是軸對稱圖形也是中心對稱圖形

        四、正方形定義、性質及判定

        1、定義:有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形

        2、性質:

        (1)正方形四個角都是直角,四條邊都相等

        (2)正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

        (3)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形

        (4)正方形的對角線與邊的夾角是45°

        (5)正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形

        3、判定:

        (1)先判定一個四邊形是矩形,再判定出有一組鄰邊相等

        (2)先判定一個四邊形是菱形,再判定出有一個角是直角

        4、對稱性:正方形是軸對稱圖形也是中心對稱圖形

        五、梯形的定義、等腰梯形的性質及判定

        1、定義:一組對邊平行,另一組對邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

        2、等腰梯形的性質:等腰梯形的兩腰相等;同一底上的兩個角相等;兩條對角線相等

        3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個角相等的梯形是等腰梯形;兩條對角線相等的梯形是等腰梯形

        4、對稱性:等腰梯形是軸對稱圖形

        六、三角形的中位線平行于三角形的第三邊并等于第三邊的一半;梯形的中位線平行于梯形的兩底并等于兩底和的一半。

        七、線段的重心是線段的中點;平行四邊形的重心是兩對角線的交點;三角形的重心是三條中線的交點。

        八、依次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形。

        九、多邊形

        1、多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。

        2、多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。

        3、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

        4、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

        5、多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內角相等。

        6、正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。

        7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

        8、公式與性質

        多邊形內角和公式:n邊形的內角和等于(n-2)·180°

        9、多邊形外角和定理:

        (1)n邊形外角和等于n·180°-(n-2)·180°=360°

        (2)邊形的每個內角與它相鄰的外角是鄰補角,所以n邊形內角和加外角和等于n·180°

        10、多邊形對角線的條數(shù):

        (1)從n邊形的一個頂點出發(fā)可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形

        (2)n邊形共有n(n-3)/2條對角線

        圓知識點、概念總結

        1、不在同一直線上的三點確定一個圓。

        2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

        推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

       、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧

        ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

        推論2圓的兩條平行弦所夾的弧相等

        3、圓是以圓心為對稱中心的中心對稱圖形

        4、圓是定點的距離等于定長的點的集合

        5、圓的內部可以看作是圓心的距離小于半徑的點的集合

        6、圓的外部可以看作是圓心的距離大于半徑的點的集合

        7、同圓或等圓的半徑相等

        8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

        9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

        10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。

        11、定理:圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角

        12、①直線L和⊙O相交d

       、谥本L和⊙O相切d=r

       、壑本L和⊙O相離d>r

        13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

        14、切線的性質定理:圓的切線垂直于經(jīng)過切點的半徑

        15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

        16、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

        17、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

        18、圓的外切四邊形的兩組對邊的和相等,外角等于內對角

        19、如果兩個圓相切,那么切點一定在連心線上

        20、①兩圓外離d>R+r

       、趦蓤A外切d=R+r

       、蹆蓤A相交R-rr)

       、軆蓤A內切d=R-r(R>r)⑤兩圓內含dr)

        21、定理:相交兩圓的連心線垂直平分兩圓的公共弦

        22、定理:把圓分成n(n≥3):

        (1)依次連結各分點所得的多邊形是這個圓的內接正n邊形

        (2)經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

        23、定理:任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

        24、正n邊形的每個內角都等于(n-2)×180°/n

        25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

        26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長

        27、正三角形面積√3a/4a表示邊長

        28、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

        29、弧長計算公式:L=n兀R/180

        30、扇形面積公式:S扇形=n兀R^2/360=LR/2

        31、內公切線長=d-(R-r)外公切線長=d-(R+r)

        32、定理:一條弧所對的圓周角等于它所對的圓心角的一半

        33、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

        34、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

        35、弧長公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r

      【初中數(shù)學必背知識點總結】相關文章:

      數(shù)學高中必背知識點總結02-26

      初中政治必背知識點總結(精選6篇)05-26

      語文必背知識點03-03

      小學語文必背知識點總結12-13

      高考地理必背知識點總結06-12

      中考化學必背知識點總結02-06

      初三備考數(shù)學會考必背知識點總結12-27

      初中必背古詩09-25

      精選高中化學必背知識點總結06-08

      高考化學必背知識點總結大全09-14