在线视频国产欧美另类,偷拍亚洲一区一区二区三区,日韩中文字幕在线视频,日本精品久久久久中文字幕

<small id="qpqhz"></small>
  • <legend id="qpqhz"></legend>

      <td id="qpqhz"><strong id="qpqhz"></strong></td>
      <small id="qpqhz"><menuitem id="qpqhz"></menuitem></small>
    1. 高一數(shù)學必修一知識點總結

      時間:2024-10-31 18:47:14 知識點總結 我要投稿

      人教版高一數(shù)學必修一知識點總結

        總結是把一定階段內的有關情況分析研究,做出有指導性結論的書面材料,它有助于我們尋找工作和事物發(fā)展的規(guī)律,從而掌握并運用這些規(guī)律,因此我們要做好歸納,寫好總結。但是卻發(fā)現(xiàn)不知道該寫些什么,以下是小編幫大家整理的人教版高一數(shù)學必修一知識點總結,歡迎大家分享。

      人教版高一數(shù)學必修一知識點總結

      人教版高一數(shù)學必修一知識點總結1

        函數(shù)的奇偶性

       。1)偶函數(shù)

        一般地,對于函數(shù)f(x)的定義域內的任意一個x,都有f(—x)=f(x),那么f(x)就叫做偶函數(shù)。

       。2)奇函數(shù)

        一般地,對于函數(shù)f(x)的定義域內的任意一個x,都有f(—x)=—f(x),那么f(x)就叫做奇函數(shù)。

        注意:

        1、函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質;函數(shù)可能沒有奇偶性,也可能既是奇函數(shù)又是偶函數(shù)。

        2、由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則—x也一定是定義域內的一個自變量(即定義域關于原點對稱)。

        3、具有奇偶性的函數(shù)的圖象的特征

        偶函數(shù)的圖象關于y軸對稱;奇函數(shù)的圖象關于原點對稱。

        總結:利用定義判斷函數(shù)奇偶性的格式步驟:

        1、首先確定函數(shù)的'定義域,并判斷其定義域是否關于原點對稱;

        2、確定f(—x)與f(x)的關系;

        3、作出相應結論:若f(—x)=f(x)或f(—x)—f(x)=0,則f(x)是偶函數(shù);若f(—x)=—f(x)或f(—x)+f(x)=0,則f(x)是奇函數(shù)。

        注意。汉瘮(shù)定義域關于原點對稱是函數(shù)具有奇偶性的必要條件。首先看函數(shù)的定義域是否關于原點對稱,若不對稱則函數(shù)是非奇非偶函數(shù)。

        若對稱:

        (1)再根據(jù)定義判定;

        (2)有時判定f(—x)=±f(x)比較困難,可考慮根據(jù)是否有f(—x)±f(x)=0或f(x)/f(—x)=±1來判定;

        (3)利用定理,或借助函數(shù)的圖象判定。

      人教版高一數(shù)學必修一知識點總結2

        空間兩條直線只有三種位置關系:平行、相交、異面

        1、按是否共面可分為兩類:

        1共面:平行、相交

        2異面:

        異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。

        異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經(jīng)過該點的直線是異面直線。

        兩異面直線所成的角:范圍為0°,90°esp.空間向量法

        兩異面直線間距離:公垂線段有且只有一條esp.空間向量法

        2、若從有無公共點的角度看可分為兩類:

        1有且僅有一個公共點——相交直線;2沒有公共點——平行或異面

        直線和平面的位置關系:

        直線和平面只有三種位置關系:在平面內、與平面相交、與平面平行

       、僦本在平面內——有無數(shù)個公共點

        ②直線和平面相交——有且只有一個公共點

        直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。

        空間向量法找平面的法向量

        規(guī)定:a、直線與平面垂直時,所成的角為直角,b、直線與平面平行或在平面內,所成的角為0°角

        由此得直線和平面所成角的取值范圍為[0°,90°]

        最小角定理:斜線與平面所成的角是斜線與該平面內任一條直線所成角中的最小角

        三垂線定理及逆定理:如果平面內的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直

        直線和平面垂直

        直線和平面垂直的定義:如果一條直線a和一個平面內的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

        直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直于這個平面。

        直線與平面垂直的性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。③直線和平面平行——沒有公共點

        直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。

        直線和平面平行的判定定理:如果平面外一條直線和這個平面內的一條直線平行,那么這條直線和這個平面平行。

        直線和平面平行的性質定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。

        多面體

        1、棱柱

        棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。

        棱柱的性質

        1側棱都相等,側面是平行四邊形

        2兩個底面與平行于底面的截面是全等的多邊形

        3過不相鄰的兩條側棱的截面對角面是平行四邊形

        2、棱錐

        棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐

        棱錐的性質:

        1側棱交于一點。側面都是三角形

        2平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方

        3、正棱錐

        正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。

        正棱錐的性質:

        1各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

        3多個特殊的直角三角形

        a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

        b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的'射影為底面三角形的垂心。

        兩個平面的位置關系

        1兩個平面互相平行的定義:空間兩平面沒有公共點

        2兩個平面的位置關系:

        兩個平面平行-----沒有公共點;兩個平面相交-----有一條公共直線。

        a、平行

        兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行于另一個平面,那么這兩個平面平行。

        兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。b、相交

        二面角

        1半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

        2二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

        3二面角的棱:這一條直線叫做二面角的棱。

        4二面角的面:這兩個半平面叫做二面角的面。

        5二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

        6直二面角:平面角是直角的二面角叫做直二面角。

        兩平面垂直

        兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥

        兩平面垂直的判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直

        兩個平面垂直的性質定理:如果兩個平面互相垂直,那么在一個平

        二面角求法:直接法作出平面角、三垂線定理及逆定理、面積射影定理、空間向量之法向量法注意求出的角與所需要求的角之間的等補關系。

      人教版高一數(shù)學必修一知識點總結3

        集合有關概念

        集合的含義

        集合的中元素的三個特性:

        元素的確定性如:世界上的山

        元素的.互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

        元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

        3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

        用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

        集合的表示方法:列舉法與描述法。

        注意:常用數(shù)集及其記法:

        非負整數(shù)集(即自然數(shù)集)記作:N

        正整數(shù)集N_N+整數(shù)集Z有理數(shù)集Q實數(shù)集R

        列舉法:{a,b,c……}

        描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。{x(R|x-3>2},{x|x-3>2}

        語言描述法:例:{不是直角三角形的三角形}

        Venn圖:

        4、集合的分類:

        有限集含有有限個元素的集合

        無限集含有無限個元素的集合

        空集不含任何元素的集合例:{x|x2=-5}

        集合間的基本關系

        1.“包含”關系—子集

        注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

        反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

        2.“相等”關系:A=B(5≥5,且5≤5,則5=5)

        實例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

        即:①任何一個集合是它本身的子集。A(A

       、谡孀蛹:如果A(B,且A(B那就說集合A是集合B的真子集,記作AB(或BA)

       、廴绻鸄(B,B(C,那么A(C

        ④如果A(B同時B(A那么A=B

        3.不含任何元素的集合叫做空集,記為Φ

        規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

        有n個元素的集合,含有2n個子集,2n-1個真子集

      人教版高一數(shù)學必修一知識點總結4

        【集合與函數(shù)概念】

        一、集合有關概念

        1.集合的含義

        2.集合的中元素的三個特性:

        (1)元素的確定性如:世界上的山

        (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

        (3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

        3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

        (1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

        (2)集合的表示方法:列舉法與描述法。

        注意:常用數(shù)集及其記法:XKb1

        非負整數(shù)集(即自然數(shù)集)記作:N

        正整數(shù)集:N_N+

        整數(shù)集:Z

        有理數(shù)集:Q

        實數(shù)集:R

        1)列舉法:{a,b,c……}

        2)描述法:將集合中的元素的'公共屬性描述出來,寫在大括號內表示集合{x?R|x-3>2},{x|x-3>2}

        3)語言描述法:例:{不是直角三角形的三角形}

        4)Venn圖:

        4、集合的分類:

        (1)有限集含有有限個元素的集合

        (2)無限集含有無限個元素的集合

        (3)空集不含任何元素的集合例:{x|x2=-5}

        二、集合間的基本關系

        1.“包含”關系—子集

        注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

        反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

        2.“相等”關系:A=B(5≥5,且5≤5,則5=5)

        實例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

        即:①任何一個集合是它本身的子集。AíA

       、谡孀蛹:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

        ③如果AíB,BíC,那么AíC

       、苋绻鸄íB同時BíA那么A=B

        3.不含任何元素的集合叫做空集,記為Φ

        規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

        4.子集個數(shù):

        有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集

        三、集合的運算

        運算類型交集并集補集

        定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.

        由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).

      人教版高一數(shù)學必修一知識點總結5

        一、集合及其表示

        1、集合的含義:

        “集合”這個詞首先讓我們想到的是上體育課或者開會時老師經(jīng)常喊的“全體集合”。數(shù)學上的“集合”和這個意思是一樣的,只不過一個是動詞一個是名詞而已。

        所以集合的含義是:某些指定的對象集在一起就成為一個集合,簡稱集,其中每一個對象叫元素。比如高一二班集合,那么所有高一二班的同學就構成了一個集合,每一個同學就稱為這個集合的元素。

        2、集合的表示

        通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。

        有一些特殊的集合需要記憶:

        非負整數(shù)集(即自然數(shù)集)N正整數(shù)集N_或N+

        整數(shù)集Z有理數(shù)集Q實數(shù)集R

        集合的表示方法:列舉法與描述法。

       、倭信e法:{a,b,c……}

        ②描述法:將集合中的元素的公共屬性描述出來。如{x?R|x—3>2},{x|x—3>2},{(x,y)|y=x2+1}

       、壅Z言描述法:例:{不是直角三角形的三角形}

        例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

        強調:描述法表示集合應注意集合的代表元素

        A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數(shù)組元素(x,y),集合B中只有元素y。

        3、集合的三個特性

       。1)無序性

        指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。

        例題:集合A={1,2},B={a,b},若A=B,求a、b的`值。

        解:,A=B

        注意:該題有兩組解。

       。2)互異性

        指集合中的元素不能重復,A={2,2}只能表示為{2}

       。3)確定性

        集合的確定性是指組成集合的元素的性質必須明確,不允許有模棱兩可、含混不清的情況。

        二、集合間的基本關系

        1。子集,A包含于B,記為:,有兩種可能

       。1)A是B的一部分,(2)A與B是同一集合,A=B,A、B兩集合中元素都相同。

        反之:集合A不包含于集合B,記作。

        如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三個集合的關系可以表示為,B=C。A是C的子集,同時A也是C的真子集。

        2。真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)

        3、不含任何元素的集合叫做空集,記為Φ。Φ是任何集合的子集。

        4、有n個元素的集合,含有2n個子集,2n—1個真子集,含有2n—2個非空真子集。如A={1,2,3,4,5},則集合A有25=32個子集,25—1=31個真子集,25—2=30個非空真子集。

        例:集合共有個子集。(13年高考第4題,簡單)

        練習:A={1,2,3},B={1,2,3,4},請問A集合有多少個子集,并寫出子集,B集合有多少個非空真子集,并將其寫出來。

        解析:

        集合A有3個元素,所以有23=8個子集。分別為:①不含任何元素的子集Φ;②含有1個元素的子集{1}{2}{3};③含有兩個元素的子集{1,2}{1,3}{2,3};④含有三個元素的子集{1,2,3}。

        集合B有4個元素,所以有24—2=14個非空真子集。具體的子集自己寫出來。

        此處這么羅嗦主要是為了讓同學們注意寫的順序,數(shù)學就是要講究嚴謹性和邏輯性的。一定要養(yǎng)成自己的邏輯習慣。如果就是為了提高計算能力倒不如直接去菜場賣菜算了,絕對能飛速提高的,那學數(shù)學也沒什么必要了。

        三、交集、并集、補集

        這個是高考的重點,但是一般題目較簡單。

        1。交集:

        由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集。記作A∩B(讀作"A交B"),即A∩B={x|x∈A,且x∈B}。

        如集合A={1,2,3},集合B={2,3,4},則A∩B={2,3}。

        例:已知集合則(11年高考第1題,簡單)

        練習:

       。2014北京)已知集合,則()

        答案:C

        解析:,所以{0,2}

        2、并集

        由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作"A并B"),即A∪B={x|x∈A,或x∈B}。

        如集合A={1,2,3},集合B={2,3,4},則A∪B={1,2,3,4}。

        例:已知集合,則。(12年高考第1題,簡單)

        答案:{1,2,4,6}

        3、全集與補集

       。1)補集:設S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

        記作:CSA即CSA={x?x?S且x?A}

       。2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

      人教版高一數(shù)學必修一知識點總結6

        一、集合有關概念

        1.集合的含義

        2.集合的中元素的三個特性:

        (1)元素的確定性,(2)元素的互異性,(3)元素的無序性,3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

        (1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

        (2)集合的表示方法:列舉法與描述法。

        ?注意:常用數(shù)集及其記法:

        非負整數(shù)集(即自然數(shù)集)記作:N

        正整數(shù)集N_N+整數(shù)集Z有理數(shù)集Q實數(shù)集R

        1)列舉法:{a,b,c……}

        2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。{x?R|x-3>2},{x|x-3>2}

        3)語言描述法:例:{不是直角三角形的三角形}

        4)Venn圖:

        4、集合的分類:

        (1)有限集含有有限個元素的集合

        (2)無限集含有無限個元素的集合

        (3)空集不含任何元素的集合例:{x|x2=-5}

        二、集合間的基本關系

        1.“包含”關系—子集

        注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

        反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

        2.“相等”關系:A=B(5≥5,且5≤5,則5=5)

        實例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

        即:①任何一個集合是它本身的子集。A?A

       、谡孀蛹:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)

       、廴绻鸄?B,B?C,那么A?C

       、苋绻鸄?B同時B?A那么A=B

        3.不含任何元素的集合叫做空集,記為Φ

        規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

        有n個元素的集合,含有2n個子集,2n-1個真子集

        三、集合的運算

        運算類型交集并集補集

        定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.

        由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).

        設S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

        例題:

        1.下列四組對象,能構成集合的是()

        A某班所有高個子的學生B的藝術家C一切很大的書D倒數(shù)等于它自身的實數(shù)

        2.集合{a,b,c}的真子集共有個

        3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},則M與N的關系是.

        4.設集合A=,B=,若AB,則的取值范圍是

        5.50名學生做的物理、化學兩種實驗,已知物理實驗做得正確得有40人,化學實驗做得正確得有31人,兩種實驗都做錯得有4人,則這兩種實驗都做對的有人。

        6.用描述法表示圖中陰影部分的點(含邊界上的點)組成的集合M=.

        7.已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值

        二、函數(shù)的有關概念

        1.函數(shù)的概念:設A、B是非空的數(shù)集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有確定的數(shù)f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.

        注意:

        1.定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。

        求函數(shù)的定義域時列不等式組的主要依據(jù)是:

        (1)分式的分母不等于零;

        (2)偶次方根的被開方數(shù)不小于零;

        (3)對數(shù)式的`真數(shù)必須大于零;

        (4)指數(shù)、對數(shù)式的底必須大于零且不等于1.

        (5)如果函數(shù)是由一些基本函數(shù)通過四則運算結合而成的那么,它的定義域是使各部分都有意義的x的值組成的集合.

        (6)指數(shù)為零底不可以等于零,(7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.

        相同函數(shù)的判斷方法:①表達式相同(與表示自變量和函數(shù)值的字母無關);②定義域一致(兩點必須同時具備)

        (見課本21頁相關例2)

        2.值域:先考慮其定義域

        (1)觀察法

        (2)配方法

        (3)代換法

        3.函數(shù)圖象知識歸納

        (1)定義:在平面直角坐標系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數(shù)對x、y為坐標的點(x,y),均在C上.

        (2)畫法

        A、描點法:

        B、圖象變換法

        常用變換方法有三種

        1)平移變換

        2)伸縮變換

        3)對稱變換

        4.區(qū)間的概念

        (1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

        (2)無窮區(qū)間

        (3)區(qū)間的數(shù)軸表示.

        5.映射

        一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有確定的元素y與之對應,那么就稱對應f:AB為從集合A到集合B的一個映射。記作f:A→B

        6.分段函數(shù)

        (1)在定義域的不同部分上有不同的解析表達式的函數(shù)。

        (2)各部分的自變量的取值情況.

        (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

        補充:復合函數(shù)

        如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復合函數(shù)。

        二.函數(shù)的性質

        1.函數(shù)的單調性(局部性質)

        (1)增函數(shù)

        設函數(shù)y=f(x)的定義域為I,如果對于定義域I內的某個區(qū)間D內的任意兩個自變量x1,x2,當x1

        如果對于區(qū)間D上的任意兩個自變量的值x1,x2,當x1f(x2),那么就說f(x)在這個區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調減區(qū)間.

        注意:函數(shù)的單調性是函數(shù)的局部性質;

        (2)圖象的特點

        如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴格的)單調性,在單調區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的

        (3).函數(shù)單調區(qū)間與單調性的判定方法

        (A)定義法:

        ○1任取x1,x2∈D,且x1

        ○2作差f(x1)-f(x2);

        ○3變形(通常是因式分解和配方);

        ○4定號(即判斷差f(x1)-f(x2)的正負);

        ○5下結論(指出函數(shù)f(x)在給定的區(qū)間D上的單調性).

        (B)圖象法(從圖象上看升降)

        (C)復合函數(shù)的單調性

        復合函數(shù)f[g(x)]的單調性與構成它的函數(shù)u=g(x),y=f(u)的單調性密切相關,其規(guī)律:“同增異減”

        注意:函數(shù)的單調區(qū)間只能是其定義域的子區(qū)間,不能把單調性相同的區(qū)間和在一起寫成其并集.

        8.函數(shù)的奇偶性(整體性質)

        (1)偶函數(shù)

        一般地,對于函數(shù)f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

        (2).奇函數(shù)

        一般地,對于函數(shù)f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

        (3)具有奇偶性的函數(shù)的圖象的特征

        偶函數(shù)的圖象關于y軸對稱;奇函數(shù)的圖象關于原點對稱.

        利用定義判斷函數(shù)奇偶性的步驟:

        ○1首先確定函數(shù)的定義域,并判斷其是否關于原點對稱;

        ○2確定f(-x)與f(x)的關系;

        ○3作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).

        (2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;

        (3)利用定理,或借助函數(shù)的圖象判定.

        9、函數(shù)的解析表達式

        (1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個變量之間的函數(shù)關系時,一是要求出它們之間的對應法則,二是要求出函數(shù)的定義域.

        (2)求函數(shù)的解析式的主要方法有:

        1)湊配法

        2)待定系數(shù)法

        3)換元法

        4)消參法

        10.函數(shù)(小)值(定義見課本p36頁)

        ○1利用二次函數(shù)的性質(配方法)求函數(shù)的(小)值

        ○2利用圖象求函數(shù)的(小)值

        ○3利用函數(shù)單調性的判斷函數(shù)的(小)值:

        如果函數(shù)y=f(x)在區(qū)間[a,b]上單調遞增,在區(qū)間[b,c]上單調遞減則函數(shù)y=f(x)在x=b處有值f(b);

        如果函數(shù)y=f(x)在區(qū)間[a,b]上單調遞減,在區(qū)間[b,c]上單調遞增則函數(shù)y=f(x)在x=b處有最小值f(b);

        例題:

        1.求下列函數(shù)的定義域:

       、泞

        2.設函數(shù)的定義域為,則函數(shù)的定義域為__

        3.若函數(shù)的定義域為,則函數(shù)的定義域是

        4.函數(shù),若,則=

        6.已知函數(shù),求函數(shù),的解析式

        7.已知函數(shù)滿足,則=。

        8.設是R上的奇函數(shù),且當時,,則當時=

        在R上的解析式為

        9.求下列函數(shù)的單調區(qū)間:

        10.判斷函數(shù)的單調性并證明你的結論.

        11.設函數(shù)判斷它的奇偶性并且求證

      人教版高一數(shù)學必修一知識點總結7

        1.函數(shù)知識:基本初等函數(shù)性質的考查,以導數(shù)知識為背景的函數(shù)問題;以向量知識為背景的函數(shù)問題;從具體函數(shù)的考查轉向抽象函數(shù)考查;從重結果考查轉向重過程考查;從熟悉情景的考查轉向新穎情景的考查。

        2.向量知識:向量具有數(shù)與形的雙重性,高考中向量試題的命題趨向:考查平面向量的基本概念和運算律;考查平面向量的坐標運算;考查平面向量與幾何、三角、代數(shù)等學科的'綜合性問題。

        3.不等式知識:突出工具性,淡化獨立性,突出解,是不等式命題的新取向。高考中不等式試題的命題趨向:基本的線性規(guī)劃問題為必考內容,不等式的性質與指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)、二交函數(shù)等結合起來,考查不等式的性質、最值、函數(shù)的單調性等;證明不等式的試題,多以函數(shù)、數(shù)列、解析幾何等知識為背景,在知識網(wǎng)絡的交匯處命題,綜合性強,能力要求高;解不等式的試題,往往與公式、根式和參數(shù)的討論聯(lián)系在一起?疾閷W生的等價轉化能力和分類討論能力;以當前經(jīng)濟、社會生產(chǎn)、生活為背景與不等式綜合的應用題仍將是高考的熱點,主要考查學生閱讀理解能力以及分析問題、解決問題的能力。

        4.立體幾何知識:2016年已經(jīng)變得簡單,2017年難度依然不大,基本的三視圖的考查難點不大,以及球與幾何體的組合體,涉及切,接的問題,線面垂直、平行位置關系的考查,已經(jīng)線面角,面面角和幾何體的體積計算等問題,都是重點考查內容。

        5.解析幾何知識:小題主要涉及圓錐曲線方程,和直線與圓的位置關系,以及圓錐曲線幾何性質的考查,極坐標下的解析幾何知識,解答題主要考查直線和圓的知識,直線與圓錐曲線的知識,涉及圓錐曲線方程,直線與圓錐曲線方程聯(lián)立,定點,定值,范圍的考查,考試的難度降低。

        6.導數(shù)知識:導數(shù)的考查還是以理科19題,文科20題的形式給出,從常見函數(shù)入手,導數(shù)工具作用(切線和單調性)的考查,綜合性強,能力要求高;往往與公式、導數(shù)往往與參數(shù)的討論聯(lián)系在一起,考查轉化與化歸能力,但今年的難點整體偏低。

        7.開放型創(chuàng)新題:答案不,或是邏輯推理題,以及解答題中的開放型試題的考查,都是重點,理科13,文科14題。

      人教版高一數(shù)學必修一知識點總結8

        一、集合

        一、集合有關概念

        1.集合的含義

        2.集合的中元素的三個特性:

        (1)元素的確定性如:世界上的山

        (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

        (3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

        3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

        (1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

        (2)集合的表示方法:列舉法與描述法。

        ?注意:常用數(shù)集及其記法:

        非負整數(shù)集(即自然數(shù)集)記作:N

        正整數(shù)集N_N+整數(shù)集Z有理數(shù)集Q實數(shù)集R

        1)列舉法:{a,b,c……}

        2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。{x?R|x-3>2},{x|x-3>2}

        3)語言描述法:例:{不是直角三角形的三角形}

        4)Venn圖:

        4、集合的分類:

        (1)有限集含有有限個元素的集合

        (2)無限集含有無限個元素的集合

        (3)空集不含任何元素的集合例:{x|x2=-5}

        二、集合間的基本關系

        1.“包含”關系—子集

        注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

        反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

        2.“相等”關系:A=B(5≥5,且5≤5,則5=5)

        實例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

        即:①任何一個集合是它本身的子集。A?A

        ②真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)

        ③如果A?B,B?C,那么A?C

       、苋绻鸄?B同時B?A那么A=B

        3.不含任何元素的集合叫做空集,記為Φ

        規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

        ?有n個元素的集合,含有2n個子集,2n-1個真子集

        二、函數(shù)

        1、函數(shù)定義域、值域求法綜合

        2.、函數(shù)奇偶性與單調性問題的解題策略

        3、恒成立問題的求解策略

        4、反函數(shù)的幾種題型及方法

        5、二次函數(shù)根的問題——一題多解

        &指數(shù)函數(shù)y=a^x

        a^a_^b=a^a+b(a>0,a、b屬于Q)

        (a^a)^b=a^ab(a>0,a、b屬于Q)

        (ab)^a=a^a_^a(a>0,a、b屬于Q)

        指數(shù)函數(shù)對稱規(guī)律:

        1、函數(shù)y=a^x與y=a^-x關于y軸對稱

        2、函數(shù)y=a^x與y=-a^x關于x軸對稱

        3、函數(shù)y=a^x與y=-a^-x關于坐標原點對稱

        &對數(shù)函數(shù)y=loga^x

        如果,且,那么:

        ○1?+;

        ○2-;

        ○3.

        注意:換底公式

        (,且;,且;).

        冪函數(shù)y=x^a(a屬于R)

        1、冪函數(shù)定義:一般地,形如的函數(shù)稱為冪函數(shù),其中為常數(shù).

        2、冪函數(shù)性質歸納.

        (1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(1,1);

        (2)時,冪函數(shù)的圖象通過原點,并且在區(qū)間上是增函數(shù).特別地,當時,冪函數(shù)的圖象下凸;當時,冪函數(shù)的圖象上凸;

        (3)時,冪函數(shù)的圖象在區(qū)間上是減函數(shù).在第一象限內,當從右邊趨向原點時,圖象在軸右方無限地逼近軸正半軸,當趨于時,圖象在軸上方無限地逼近軸正半軸.

        方程的.根與函數(shù)的零點

        1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

        2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。

        即:方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.

        3、函數(shù)零點的求法:

        ○1(代數(shù)法)求方程的實數(shù)根;

        ○2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質找出零點.

        4、二次函數(shù)的零點:

        二次函數(shù).

        (1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.

        (2)△=0,方程有兩相等實根,二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.

        (3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.

        三、平面向量

        向量:既有大小,又有方向的量.

        數(shù)量:只有大小,沒有方向的量.

        有向線段的三要素:起點、方向、長度.

        零向量:長度為的向量.

        單位向量:長度等于個單位的向量.

        相等向量:長度相等且方向相同的向量

        &向量的運算

        加法運算

        AB+BC=AC,這種計算法則叫做向量加法的三角形法則。

        已知兩個從同一點O出發(fā)的兩個向量OA、OB,以OA、OB為鄰邊作平行四邊形OACB,則以O為起點的對角線OC就是向量OA、OB的和,這種計算法則叫做向量加法的平行四邊形法則。

        對于零向量和任意向量a,有:0+a=a+0=a。

        |a+b|≤|a|+|b|。

        向量的加法滿足所有的加法運算定律。

        減法運算

        與a長度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

        (1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

        數(shù)乘運算

        實數(shù)λ與向量a的積是一個向量,這種運算叫做向量的數(shù)乘,記作λa|λa|=|λ||a|,當λ>0時,λa的方向和a的方向相同,當λ<0時,λa的方向和a的方向相反,當λ=0時,λa=0。

        設λ、μ是實數(shù),那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。

        向量的加法運算、減法運算、數(shù)乘運算統(tǒng)稱線性運算。

        向量的數(shù)量積

        已知兩個非零向量a、b,那么|a||b|cosθ叫做a與b的數(shù)量積或內積,記作a?b,θ是a與b的夾角|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數(shù)量積為0。

        a?b的幾何意義:數(shù)量積a?b等于a的長度|a|與b在a的方向上的投影|b|cosθ的乘積。

        兩個向量的數(shù)量積等于它們對應坐標的乘積的和。

        四、三角函數(shù)

        1、善于用“1“巧解題

        2、三角問題的非三角化解題策略

        3、三角函數(shù)有界性求最值解題方法

        4、三角函數(shù)向量綜合題例析

        5、三角函數(shù)中的數(shù)學思想方法

      【高一數(shù)學必修一知識點總結】相關文章:

      高一數(shù)學必修知識點總結12-15

      高一數(shù)學必修知識點總結08-30

      高一數(shù)學必修知識點總結08-01

      高一數(shù)學必修一知識點總結07-18

      高一數(shù)學必修一知識點總結05-17

      高一數(shù)學必修一知識點總結01-03

      高一數(shù)學必修一知識點總結01-12

      高一數(shù)學必修一知識點總結03-08

      高一數(shù)學必修二知識點總結11-08

      高一必修二數(shù)學知識點總結09-08