在线视频国产欧美另类,偷拍亚洲一区一区二区三区,日韩中文字幕在线视频,日本精品久久久久中文字幕

<small id="qpqhz"></small>
  • <legend id="qpqhz"></legend>

      <td id="qpqhz"><strong id="qpqhz"></strong></td>
      <small id="qpqhz"><menuitem id="qpqhz"></menuitem></small>
    1. 高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

      時(shí)間:2023-07-18 11:10:52 知識(shí)點(diǎn)總結(jié) 我要投稿

      高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)(通用19篇)

        總結(jié)是指社會(huì)團(tuán)體、企業(yè)單位和個(gè)人對(duì)某一階段的學(xué)習(xí)、工作或其完成情況加以回顧和分析,得出教訓(xùn)和一些規(guī)律性認(rèn)識(shí)的一種書(shū)面材料,它在我們的學(xué)習(xí)、工作中起到呈上啟下的作用,不如立即行動(dòng)起來(lái)寫(xiě)一份總結(jié)吧。但是卻發(fā)現(xiàn)不知道該寫(xiě)些什么,下面是小編幫大家整理的高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié),歡迎大家分享。

      高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)(通用19篇)

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)1

        一:函數(shù)模型及其應(yīng)用

        本節(jié)主要包括函數(shù)的模型、函數(shù)的應(yīng)用等知識(shí)點(diǎn)。主要是理解函數(shù)解應(yīng)用題的一般步驟靈活利用函數(shù)解答實(shí)際應(yīng)用題。

        1、常見(jiàn)的函數(shù)模型有一次函數(shù)模型、二次函數(shù)模型、指數(shù)函數(shù)模型、對(duì)數(shù)函數(shù)模型、分段函數(shù)模型等。

        2、用函數(shù)解應(yīng)用題的基本步驟是:

        (1)閱讀并且理解題意。(關(guān)鍵是數(shù)據(jù)、字母的實(shí)際意義);

        (2)設(shè)量建模;

       。3)求解函數(shù)模型;

       。4)簡(jiǎn)要回答實(shí)際問(wèn)題。

        常見(jiàn)考法:

        本節(jié)知識(shí)在段考和高考中考查的形式多樣,頻率較高,選擇題、填空題和解答題都有。多考查分段函數(shù)和較復(fù)雜的函數(shù)的最值等問(wèn)題,屬于拔高題,難度較大。

        誤區(qū)提醒:

        1、求解應(yīng)用性問(wèn)題時(shí),不僅要考慮函數(shù)本身的定義域,還要結(jié)合實(shí)際問(wèn)題理解自變量的取值范圍。

        2、求解應(yīng)用性問(wèn)題時(shí),首先要弄清題意,分清條件和結(jié)論,抓住關(guān)鍵詞和量,理順數(shù)量關(guān)系,然后將文字語(yǔ)言轉(zhuǎn)化成數(shù)學(xué)語(yǔ)言,建立相應(yīng)的數(shù)學(xué)模型。

        【典型例題】

        例1:

       。1)某種儲(chǔ)蓄的月利率是0。36%,今存入本金100元,求本金與利息的和(即本息和)y(元)與所存月數(shù)x之間的函數(shù)關(guān)系式,并計(jì)算5個(gè)月后的本息和(不計(jì)復(fù)利)。

       。2)按復(fù)利計(jì)算利息的一種儲(chǔ)蓄,本金為a元,每期利率為r,設(shè)本利和為y,存期為x,寫(xiě)出本利和y隨存期x變化的函數(shù)式。如果存入本金1000元,每期利率2。25%,試計(jì)算5期后的`本利和是多少?解:(1)利息=本金×月利率×月數(shù)。y=100+100×0。36%·x=100+0。36x,當(dāng)x=5時(shí),y=101。8,∴5個(gè)月后的本息和為101。8元。

        例2:

        某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤(rùn)與投資單位是萬(wàn)元)

       。1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫(xiě)出它們的函數(shù)關(guān)系式。

       。2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能是企業(yè)獲得利潤(rùn),其利潤(rùn)約為多少萬(wàn)元。(精確到1萬(wàn)元)。

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)2

        知識(shí)點(diǎn)1

        一、集合有關(guān)概念

        1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。

        2、集合的中元素的三個(gè)特性:

        1、元素的確定性;

        2、元素的互異性;

        3、元素的無(wú)序性

        說(shuō)明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。

       。2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。

       。3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

       。4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

        3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

        1、用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

        2、集合的表示方法:列舉法與描述法。

        注意。撼S脭(shù)集及其記法:

        非負(fù)整數(shù)集(即自然數(shù)集)記作:N

        正整數(shù)集N或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

        關(guān)于“屬于”的概念

        集合的.元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A

        列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上。

        描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法。

       、僬Z(yǔ)言描述法:例:{不是直角三角形的三角形}

       、跀(shù)學(xué)式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

        4、集合的分類(lèi):

        1、有限集含有有限個(gè)元素的集合

        2、無(wú)限集含有無(wú)限個(gè)元素的集合

        3、空集不含任何元素的集合例:{x|x2=—5}

        知識(shí)點(diǎn)2

        I、定義與定義表達(dá)式

        一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

       。╝,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大、)

        則稱(chēng)y為x的二次函數(shù)。

        二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

        II、二次函數(shù)的三種表達(dá)式

        一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

        頂點(diǎn)式:y=a(x—h)^2+k[拋物線的頂點(diǎn)P(h,k)]

        交點(diǎn)式:y=a(x—x?)(x—x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]

        注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

        h=—b/2ak=(4ac—b^2)/4ax?,x?=(—b±√b^2—4ac)/2a

        III、二次函數(shù)的圖像

        在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

        IV、拋物線的性質(zhì)

        1、拋物線是軸對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸為直線x=—b/2a。對(duì)稱(chēng)軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。

        特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱(chēng)軸是y軸(即直線x=0)

        2、拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

        P(—b/2a,(4ac—b^2)/4a)

        當(dāng)—b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2—4ac=0時(shí),P在x軸上。

        3、二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。

        當(dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a<0時(shí),拋物線向下開(kāi)口。

        |a|越大,則拋物線的開(kāi)口越小。

        知識(shí)點(diǎn)3

        1、拋物線是軸對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸為直線

        x=—b/2a。

        對(duì)稱(chēng)軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。

        特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱(chēng)軸是y軸(即直線x=0)

        2、拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

        P(—b/2a,(4ac—b’2)/4a)

        當(dāng)—b/2a=0時(shí),P在y軸上;當(dāng)Δ=b’2—4ac=0時(shí),P在x軸上。

        3、二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。

        當(dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a<0時(shí),拋物線向下開(kāi)口。

        |a|越大,則拋物線的開(kāi)口越小。

        4、一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱(chēng)軸的位置。

        當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱(chēng)軸在y軸左;

        當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱(chēng)軸在y軸右。

        5、常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

        拋物線與y軸交于(0,c)

        6、拋物線與x軸交點(diǎn)個(gè)數(shù)

        Δ=b’2—4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

        Δ=b’2—4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

        Δ=b’2—4ac<0時(shí),拋物線與x軸沒(méi)有交點(diǎn)。X的取值是虛數(shù)(x=—b±√b’2—4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

        知識(shí)點(diǎn)4

        對(duì)數(shù)函數(shù)

        對(duì)數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。

        右圖給出對(duì)于不同大小a所表示的函數(shù)圖形:

        可以看到對(duì)數(shù)函數(shù)的圖形只不過(guò)的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對(duì)稱(chēng)圖形,因?yàn)樗鼈兓榉春瘮?shù)。

        (1)對(duì)數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。

        (2)對(duì)數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。

       。3)函數(shù)總是通過(guò)(1,0)這點(diǎn)。

       。4)a大于1時(shí),為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時(shí),函數(shù)為單調(diào)遞減函數(shù),并且下凹。

       。5)顯然對(duì)數(shù)函數(shù)。

        知識(shí)點(diǎn)5

        方程的根與函數(shù)的零點(diǎn)

        1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

        2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn)。

        3、函數(shù)零點(diǎn)的求法:

       。1)(代數(shù)法)求方程的實(shí)數(shù)根;

       。2)(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn)。

        4、二次函數(shù)的零點(diǎn):

       。1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn)。

       。2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn)。

       。3)△<0,方程無(wú)實(shí)根,二次函數(shù)的圖象與軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn)。

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)3

        一、指數(shù)函數(shù)

        (一)指數(shù)與指數(shù)冪的運(yùn)算

        1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

        當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開(kāi)方數(shù)(radicand).

        當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的.次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒(méi)有偶次方根;0的任何次方根都是0,記作。

        注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),

        2.分?jǐn)?shù)指數(shù)冪

        正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

        0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義

        指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

        3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)

        (二)指數(shù)函數(shù)及其性質(zhì)

        1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽.

        注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.

        2、指數(shù)函數(shù)的圖象和性質(zhì)

        【函數(shù)的應(yīng)用】

        1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

        2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:

        方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).

        3、函數(shù)零點(diǎn)的求法:

        求函數(shù)的零點(diǎn):

        1(代數(shù)法)求方程的實(shí)數(shù)根;

        2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn).

        4、二次函數(shù)的零點(diǎn):

        二次函數(shù).

        1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

        2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

        3)△<0,方程無(wú)實(shí)根,二次函數(shù)的圖象與軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn).

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)4

        1.函數(shù)知識(shí):基本初等函數(shù)性質(zhì)的考查,以導(dǎo)數(shù)知識(shí)為背景的函數(shù)問(wèn)題;以向量知識(shí)為背景的函數(shù)問(wèn)題;從具體函數(shù)的考查轉(zhuǎn)向抽象函數(shù)考查;從重結(jié)果考查轉(zhuǎn)向重過(guò)程考查;從熟悉情景的考查轉(zhuǎn)向新穎情景的考查。

        2.向量知識(shí):向量具有數(shù)與形的雙重性,高考中向量試題的命題趨向:考查平面向量的基本概念和運(yùn)算律;考查平面向量的坐標(biāo)運(yùn)算;考查平面向量與幾何、三角、代數(shù)等學(xué)科的綜合性問(wèn)題。

        3.不等式知識(shí):突出工具性,淡化獨(dú)立性,突出解,是不等式命題的新取向。高考中不等式試題的命題趨向:基本的線性規(guī)劃問(wèn)題為必考內(nèi)容,不等式的性質(zhì)與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)、二交函數(shù)等結(jié)合起來(lái),考查不等式的性質(zhì)、最值、函數(shù)的單調(diào)性等;證明不等式的試題,多以函數(shù)、數(shù)列、解析幾何等知識(shí)為背景,在知識(shí)網(wǎng)絡(luò)的交匯處命題,綜合性強(qiáng),能力要求高;解不等式的試題,往往與公式、根式和參數(shù)的討論聯(lián)系在一起?疾閷W(xué)生的等價(jià)轉(zhuǎn)化能力和分類(lèi)討論能力;以當(dāng)前經(jīng)濟(jì)、社會(huì)生產(chǎn)、生活為背景與不等式綜合的應(yīng)用題仍將是高考的熱點(diǎn),主要考查學(xué)生閱讀理解能力以及分析問(wèn)題、解決問(wèn)題的能力。

        4.立體幾何知識(shí):20xx年已經(jīng)變得簡(jiǎn)單,20xx年難度依然不大,基本的三視圖的考查難點(diǎn)不大,以及球與幾何體的組合體,涉及切,接的問(wèn)題,線面垂直、平行位置關(guān)系的考查,已經(jīng)線面角,面面角和幾何體的體積計(jì)算等問(wèn)題,都是重點(diǎn)考查內(nèi)容。

        5.解析幾何知識(shí):小題主要涉及圓錐曲線方程,和直線與圓的'位置關(guān)系,以及圓錐曲線幾何性質(zhì)的考查,極坐標(biāo)下的解析幾何知識(shí),解答題主要考查直線和圓的知識(shí),直線與圓錐曲線的知識(shí),涉及圓錐曲線方程,直線與圓錐曲線方程聯(lián)立,定點(diǎn),定值,范圍的考查,考試的難度降低。

        6.導(dǎo)數(shù)知識(shí):導(dǎo)數(shù)的考查還是以理科19題,文科20題的形式給出,從常見(jiàn)函數(shù)入手,導(dǎo)數(shù)工具作用(切線和單調(diào)性)的考查,綜合性強(qiáng),能力要求高;往往與公式、導(dǎo)數(shù)往往與參數(shù)的討論聯(lián)系在一起,考查轉(zhuǎn)化與化歸能力,但今年的難點(diǎn)整體偏低。

        7.開(kāi)放型創(chuàng)新題:答案不,或是邏輯推理題,以及解答題中的開(kāi)放型試題的考查,都是重點(diǎn),理科13,文科14題。

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)5

        1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱(chēng)軸如下表:

        解析式

        頂點(diǎn)坐標(biāo)

        對(duì)稱(chēng)軸

        y=ax^2

        (0,0)

        x=0

        y=a(x-h)^2

        (h,0)

        x=h

        y=a(x-h)^2+k

        (h,k)

        x=h

        y=ax^2+bx+c

        (-b/2a,[4ac-b^2]/4a)

        x=-b/2a

        當(dāng)h>0時(shí),y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動(dòng)h個(gè)單位得到,

        當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.

        當(dāng)h>0,k>0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;

        當(dāng)h>0,k<0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

        當(dāng)h<0,k>0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

        當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

        因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱(chēng)軸,拋物線的大體位置就很清楚了.這給畫(huà)圖象提供了方便.

        2.拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開(kāi)口向上,當(dāng)a<0時(shí)開(kāi)口向下,對(duì)稱(chēng)軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).

        3.拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減小;當(dāng)x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時(shí),y隨x的增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的增大而減小.

        4.拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):

        (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

        (2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

        (a≠0)的.兩根.這兩點(diǎn)間的距離AB=|x?-x?|

        當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);

        當(dāng)△<0.圖象與x軸沒(méi)有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0.

        5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.

        頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.

        6.用待定系數(shù)法求二次函數(shù)的解析式

        (1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:

        y=ax^2+bx+c(a≠0).

        (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ(chēng)軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)^2+k(a≠0).

        (3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

        7.二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)6

        數(shù)學(xué)是利用符號(hào)語(yǔ)言研究數(shù)量、結(jié)構(gòu)、變化以及空間模型等概念的一門(mén)學(xué)科。小編準(zhǔn)備了高一數(shù)學(xué)必修1期末考知識(shí)點(diǎn),希望你喜歡。

        一、集合有關(guān)概念

        1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素.

        2、集合的中元素的三個(gè)特性:

        1.元素的確定性; 2.元素的互異性; 3.元素的無(wú)序性

        說(shuō)明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素.

        (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素.

        (3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.

        (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性.

        3、集合的表示:{ } 如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

        1. 用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

        2.集合的表示方法:列舉法與描述法.

        注意啊:常用數(shù)集及其記法:

        非負(fù)整數(shù)集(即自然數(shù)集)記作:N

        正整數(shù)集 N*或N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R

        關(guān)于屬于的概念

        集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A 記作 aA ,相反,a不屬于集合A 記作 a?A

        列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上.

        描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的`方法.用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法.

       、僬Z(yǔ)言描述法:例:{不是直角三角形的三角形}

        ②數(shù)學(xué)式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}

        4、集合的分類(lèi):

        1.有限集 含有有限個(gè)元素的集合

        2.無(wú)限集 含有無(wú)限個(gè)元素的集合

        3.空集 不含任何元素的集合 例:{x|x2=-5}

        二、集合間的基本關(guān)系

        1.包含關(guān)系子集

        注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合.

        反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

        2.相等關(guān)系(55,且55,則5=5)

        實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} 元素相同

        結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B

       、 任何一個(gè)集合是它本身的子集.AA

       、谡孀蛹:如果AB,且A1 B那就說(shuō)集合A是集合B的真子集,記作A B(或B A)

       、廴绻 AB, BC ,那么 AC

       、 如果AB 同時(shí) BA 那么A=B

        3. 不含任何元素的集合叫做空集,記為

        規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集.

        三、集合的運(yùn)算

        1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

        記作AB(讀作A交B),即AB={x|xA,且xB}.

        2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作A并B),即AB={x|xA,或xB}.

        3、交集與并集的性質(zhì):AA = A, A=, AB = BA,AA = A,

        A= A ,AB = BA.

        4、全集與補(bǔ)集

        (1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

        (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集.通常用U來(lái)表示.

        (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)7

        集合間的基本關(guān)系

        1.“包含”關(guān)系—子集

        注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

        2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

        實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同”

        結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B

        A?① 任何一個(gè)集合是它本身的子集。A

        B那就說(shuō)集合A是集合B的真子集,記作A B(或B A)?B,且A?②真子集:如果A

        C?C ,那么 A?B, B?③如果 A

        A 那么A=B?B 同時(shí) B?④ 如果A

        3. 不含任何元素的集合叫做空集,記為Φ

        規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

        集合的運(yùn)算

        1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

        記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

        2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的`集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

        3、交集與并集的性質(zhì):A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.

        4、全集與補(bǔ)集

        (1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

        A}?S且 x? x?記作: CSA 即 CSA ={x

        (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來(lái)表示。

        (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)8

        棱錐

        棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐

        棱錐的的性質(zhì):

        (1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形

        (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方

        正棱錐

        正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

        正棱錐的性質(zhì):

        (1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的'斜高。

        (3)多個(gè)特殊的直角三角形

        esp:

        a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。

        b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)9

        集合的運(yùn)算

        運(yùn)算類(lèi)型交 集并 集補(bǔ) 集

        定義域 R定義域 R

        值域>0值域>0

        在R上單調(diào)遞增在R上單調(diào)遞減

        非奇非偶函數(shù)非奇非偶函數(shù)

        函數(shù)圖象都過(guò)定點(diǎn)(0,1)函數(shù)圖象都過(guò)定點(diǎn)(0,1)

        注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:

       。1)在[a,b]上, 值域是 或 ;

       。2)若 ,則 ; 取遍所有正數(shù)當(dāng)且僅當(dāng) ;

       。3)對(duì)于指數(shù)函數(shù) ,總有 ;

        二、對(duì)數(shù)函數(shù)

        (一)對(duì)數(shù)

        1.對(duì)數(shù)的概念:

        一般地,如果 ,那么數(shù) 叫做以 為底 的對(duì)數(shù),記作: ( — 底數(shù), — 真數(shù), — 對(duì)數(shù)式)

        說(shuō)明:○1 注意底數(shù)的限制 ,且 ;

        ○2 ;

        ○3 注意對(duì)數(shù)的書(shū)寫(xiě)格式.

        兩個(gè)重要對(duì)數(shù):

        ○1 常用對(duì)數(shù):以10為底的對(duì)數(shù) ;

        ○2 自然對(duì)數(shù):以無(wú)理數(shù) 為底的對(duì)數(shù)的對(duì)數(shù) .

        指數(shù)式與對(duì)數(shù)式的互化

        冪值 真數(shù)

        = N = b

        底數(shù)

        指數(shù) 對(duì)數(shù)

       。ǘ⿲(duì)數(shù)的運(yùn)算性質(zhì)

        如果 ,且 , , ,那么:

        ○1 + ;

        ○2 - ;

        ○3 .

        注意:換底公式: ( ,且 ; ,且 ; ).

        利用換底公式推導(dǎo)下面的結(jié)論:(1) ;(2) .

       。3)、重要的公式 ①、負(fù)數(shù)與零沒(méi)有對(duì)數(shù); ②、 , ③、對(duì)數(shù)恒等式

       。ǘ⿲(duì)數(shù)函數(shù)

        1、對(duì)數(shù)函數(shù)的概念:函數(shù) ,且 叫做對(duì)數(shù)函數(shù),其中 是自變量,函數(shù)的`定義域是(0,+∞).

        注意:○1 對(duì)數(shù)函數(shù)的定義與指數(shù)函數(shù)類(lèi)似,都是形式定義,注意辨別。如: , 都不是對(duì)數(shù)函數(shù),而只能稱(chēng)其為對(duì)數(shù)型函數(shù).

        ○2 對(duì)數(shù)函數(shù)對(duì)底數(shù)的限制: ,且 .

        2、對(duì)數(shù)函數(shù)的性質(zhì):

        a>10

        定義域x>0定義域x>0

        值域?yàn)镽值域?yàn)镽

        在R上遞增在R上遞減

        函數(shù)圖象都過(guò)定點(diǎn)(1,0)函數(shù)圖象都過(guò)定點(diǎn)(1,0)

       。ㄈ﹥绾瘮(shù)

        1、冪函數(shù)定義:一般地,形如 的函數(shù)稱(chēng)為冪函數(shù),其中 為常數(shù).

        2、冪函數(shù)性質(zhì)歸納.

       。1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過(guò)點(diǎn)(1,1);

        (2) 時(shí),冪函數(shù)的圖象通過(guò)原點(diǎn),并且在區(qū)間 上是增函數(shù).特別地,當(dāng) 時(shí),冪函數(shù)的圖象下凸;當(dāng) 時(shí),冪函數(shù)的圖象上凸;

       。3) 時(shí),冪函數(shù)的圖象在區(qū)間 上是減函數(shù).在第一象限內(nèi),當(dāng) 從右邊趨向原點(diǎn)時(shí),圖象在 軸右方無(wú)限地逼近 軸正半軸,當(dāng) 趨于 時(shí),圖象在 軸上方無(wú)限地逼近 軸正半軸.

        第四章 函數(shù)的應(yīng)用

        一、方程的根與函數(shù)的零點(diǎn)

        1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù) ,把使 成立的實(shí)數(shù) 叫做函數(shù) 的零點(diǎn)。

        2、函數(shù)零點(diǎn)的意義:函數(shù) 的零點(diǎn)就是方程 實(shí)數(shù)根,亦即函數(shù) 的圖象與 軸交點(diǎn)的橫坐標(biāo)。

        即:方程 有實(shí)數(shù)根 函數(shù) 的圖象與 軸有交點(diǎn) 函數(shù) 有零點(diǎn).

        3、函數(shù)零點(diǎn)的求法:

        ○1 (代數(shù)法)求方程 的實(shí)數(shù)根;

        ○2 (幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù) 的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn).

        4、二次函數(shù)的零點(diǎn):

        二次函數(shù) .

       。1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

       。2)△=0,方程 有兩相等實(shí)根,二次函數(shù)的圖象與 軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

       。3)△<0,方程 無(wú)實(shí)根,二次函數(shù)的圖象與 軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn).

        5.函數(shù)的模型

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)10

        【基本初等函數(shù)】

        一、指數(shù)函數(shù)

        (一)指數(shù)與指數(shù)冪的運(yùn)算

        1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈

        當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù)。此時(shí),的次方根用符號(hào)表示。式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開(kāi)方數(shù)(radicand)。

        當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù)。此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)—表示。正的次方根與負(fù)的次方根可以合并成±(>0)。由此可得:負(fù)數(shù)沒(méi)有偶次方根;0的任何次方根都是0,記作。

        注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),

        2、分?jǐn)?shù)指數(shù)冪

        正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

        0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義

        指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的.概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪。

        3、實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)

       。ǘ┲笖(shù)函數(shù)及其性質(zhì)

        1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽。

        注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1。

        2、指數(shù)函數(shù)的圖象和性質(zhì)

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)11

        集合間的基本關(guān)系

        1.子集,A包含于B,記為:,有兩種可能

        (1)A是B的一部分,

        (2)A與B是同一集合,A=B,A、B兩集合中元素都相同。

        反之:集合A不包含于集合B,記作。

        如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三個(gè)集合的關(guān)系可以表示為,,B=C。A是C的子集,同時(shí)A也是C的真子集。

        2.真子集:如果A?B,且A?B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)

        3、不含任何元素的集合叫做空集,記為Φ。Φ是任何集合的子集。

        4、有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-2個(gè)非空真子集。如A={1,2,3,4,5},則集合A有25=32個(gè)子集,25-1=31個(gè)真子集,25-2=30個(gè)非空真子集。

        例:集合共有個(gè)子集。(13年高考第4題,簡(jiǎn)單)

        練習(xí):A={1,2,3},B={1,2,3,4},請(qǐng)問(wèn)A集合有多少個(gè)子集,并寫(xiě)出子集,B集合有多少個(gè)非空真子集,并將其寫(xiě)出來(lái)。

        解析:

        集合A有3個(gè)元素,所以有23=8個(gè)子集。分別為:①不含任何元素的子集Φ;②含有1個(gè)元素的子集{1}{2}{3};③含有兩個(gè)元素的子集{1,2}{1,3}{2,3};④含有三個(gè)元素的子集{1,2,3}。

        集合B有4個(gè)元素,所以有24-2=14個(gè)非空真子集。具體的.子集自己寫(xiě)出來(lái)。

        此處這么羅嗦主要是為了讓同學(xué)們注意寫(xiě)的順序,數(shù)學(xué)就是要講究嚴(yán)謹(jǐn)性和邏輯性的。一定要養(yǎng)成自己的邏輯習(xí)慣。如果就是為了提高計(jì)算能力倒不如直接去菜場(chǎng)賣(mài)菜算了,絕對(duì)能飛速提高的,那學(xué)數(shù)學(xué)也沒(méi)什么必要了。

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)12

        高一數(shù)學(xué)集合有關(guān)概念

        集合的含義

        集合的中元素的三個(gè)特性:

        元素的確定性如:世界上的山

        元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

        元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合

        3。集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

        用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

        集合的表示方法:列舉法與描述法。

        注意:常用數(shù)集及其記法:

        非負(fù)整數(shù)集(即自然數(shù)集)記作:N

        正整數(shù)集N_N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

        列舉法:{a,b,c……}

        描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法。{x(R|x—3>2},{x|x—3>2}

        語(yǔ)言描述法:例:{不是直角三角形的.三角形}

        Venn圖:

        4、集合的分類(lèi):

        有限集含有有限個(gè)元素的集合

        無(wú)限集含有無(wú)限個(gè)元素的集合

        空集不含任何元素的集合例:{x|x2=—5}

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)13

        一、集合及其表示

        1、集合的含義:

        “集合”這個(gè)詞首先讓我們想到的是上體育課或者開(kāi)會(huì)時(shí)老師經(jīng)常喊的“全體集合”。數(shù)學(xué)上的“集合”和這個(gè)意思是一樣的,只不過(guò)一個(gè)是動(dòng)詞一個(gè)是名詞而已。

        所以集合的含義是:某些指定的對(duì)象集在一起就成為一個(gè)集合,簡(jiǎn)稱(chēng)集,其中每一個(gè)對(duì)象叫元素。比如高一二班集合,那么所有高一二班的同學(xué)就構(gòu)成了一個(gè)集合,每一個(gè)同學(xué)就稱(chēng)為這個(gè)集合的元素。

        2、集合的表示

        通常用大寫(xiě)字母表示集合,用小寫(xiě)字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。

        有一些特殊的集合需要記憶:

        非負(fù)整數(shù)集(即自然數(shù)集)N正整數(shù)集N_或N+

        整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

        集合的表示方法:列舉法與描述法。

        ①列舉法:{a,b,c……}

       、诿枋龇ǎ簩⒓现械脑氐墓矊傩悦枋龀鰜(lái)。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}

       、壅Z(yǔ)言描述法:例:{不是直角三角形的`三角形}

        例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

        強(qiáng)調(diào):描述法表示集合應(yīng)注意集合的代表元素

        A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數(shù)組元素(x,y),集合B中只有元素y。

        3、集合的三個(gè)特性

        (1)無(wú)序性

        指集合中的元素排列沒(méi)有順序,如集合A={1,2},集合B={2,1},則集合A=B。

        例題:集合A={1,2},B={a,b},若A=B,求a、b的值。

        解:,A=B

        注意:該題有兩組解。

        (2)互異性

        指集合中的元素不能重復(fù),A={2,2}只能表示為{2}

        (3)確定性

        集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的情況。

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)14

        一、教學(xué)思想:

        教育學(xué)生掌握基礎(chǔ)知識(shí)與基本技能,培養(yǎng)學(xué)生的邏輯思維能力、運(yùn)算能力、空間觀念和解決簡(jiǎn)單實(shí)際問(wèn)題的能力,使學(xué)生逐步學(xué)會(huì)正確、合理地進(jìn)行

        運(yùn)算,逐步學(xué)會(huì)觀察分析、綜合、抽象、概括。會(huì)用歸納演繹、類(lèi)比進(jìn)行簡(jiǎn)單的推理。使學(xué)生懂得數(shù)學(xué)來(lái)源于實(shí)踐又反過(guò)來(lái)作用于實(shí)踐。提高學(xué)習(xí)數(shù)學(xué)的興趣,逐步培養(yǎng)學(xué)生具有良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的態(tài)度。頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索的新思想。培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決問(wèn)題的能力。

        二、在教學(xué)過(guò)程中抓住以下幾個(gè)環(huán)節(jié)

        (1)認(rèn)真?zhèn)湔n。認(rèn)真研究教材及考綱,明確教學(xué)目標(biāo),抓住重點(diǎn)、難點(diǎn),精心設(shè)計(jì)教學(xué)過(guò)程,重視每一章節(jié)內(nèi)容與前后知識(shí)的聯(lián)系及其地位,重視課后反思,設(shè)計(jì)好每一節(jié)課的師生互動(dòng)的細(xì)節(jié)。

        (2)抓住課堂45分鐘。

        本學(xué)期的教學(xué)內(nèi)容共五章、

        第一章分式

        第二章一元二次方程

        第三章圓

        第四章圖形的全等

        第五章樣本與總體嚴(yán)格按照教學(xué)計(jì)劃,備課統(tǒng)一進(jìn)度,統(tǒng)一練習(xí),進(jìn)行教學(xué),精心設(shè)計(jì)每一節(jié)課的每一個(gè)環(huán)節(jié),爭(zhēng)取每節(jié)課達(dá)到教學(xué)目標(biāo),突出重點(diǎn),分散難點(diǎn),增大課堂容量組織學(xué)生人人參與課堂活動(dòng),使每個(gè)學(xué)生積極主動(dòng)參與課堂活動(dòng),使每個(gè)學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦,及時(shí)反饋信息提高課堂效益。

        (3)課后反饋。精選適當(dāng)?shù)木毩?xí)題、測(cè)試卷,及時(shí)批改作業(yè),發(fā)現(xiàn)問(wèn)題及時(shí)給學(xué)生面對(duì)面的指出并指導(dǎo)學(xué)生搞懂弄通,不留一個(gè)疑難點(diǎn),讓學(xué)生學(xué)有所獲。

        三、不斷鉆研業(yè)務(wù),提高業(yè)務(wù)能力及水平

        積極參加業(yè)務(wù)學(xué)習(xí),看書(shū)、看報(bào),參加學(xué)校組織的培訓(xùn),使之更好的為基礎(chǔ)教育的`改革努力,掌握新的技能、技巧,不斷努力,取長(zhǎng)補(bǔ)短,揚(yáng)長(zhǎng)避短,努力使教學(xué)更務(wù)實(shí),方法更靈活,手段更先進(jìn)。

        四、提高質(zhì)量的措施

        1、認(rèn)真學(xué)習(xí)鉆研新課標(biāo),掌握教材。

        2、認(rèn)真?zhèn)湔n,爭(zhēng)取充分掌握學(xué)生動(dòng)態(tài)。

        3、認(rèn)真上好每一堂課。

        4、落實(shí)每一堂課后輔助,查漏補(bǔ)缺。

        5、積極與其它老師溝通,加強(qiáng)教研教改,提高教學(xué)水平。

        6、經(jīng)常聽(tīng)取學(xué)生良好的合理化建議。

        7、以“兩頭”帶“中間”戰(zhàn)略思想不變。

        8、深化兩極生的訓(xùn)導(dǎo)。

        周教學(xué)進(jìn)度安排

        周次主要內(nèi)容教學(xué)目標(biāo)

        1整式的除法會(huì)單項(xiàng)式或多項(xiàng)式除以單項(xiàng)式

        2分式的基本性質(zhì)、運(yùn)算會(huì)約分、通分、乘除、加減運(yùn)算

        3分式方程解法會(huì)解分式方程

        4一元二次方程及解法解一元二次方程

        5完成與探索的總結(jié)培養(yǎng)學(xué)生綜合能力

        6圓的相關(guān)知識(shí)了解圓的有關(guān)概念

        7與圓有關(guān)的位置關(guān)系掌握各種位置關(guān)系有應(yīng)用

        8圓的相關(guān)問(wèn)題綜合知識(shí)

        9期中前復(fù)習(xí)查漏補(bǔ)缺

        10期中檢測(cè)自我檢查相當(dāng)激勵(lì)

        11全等三角形的識(shí)別學(xué)會(huì)判斷

        12命題與證明學(xué)會(huì)初步說(shuō)理

        13尺規(guī)作圖會(huì)簡(jiǎn)單地尺規(guī)作圖

        14復(fù)習(xí)總結(jié)本章

        15樣本與總體能用隨機(jī)抽樣的方法抽樣

        16用樣本估計(jì)總體會(huì)用樣本估計(jì)總體明白原因

        17概率懂得概率含義與預(yù)測(cè)

        18本章小結(jié)熟練掌握本章內(nèi)容

        19總復(fù)習(xí)本章內(nèi)容及串聯(lián)

        20期終考試檢測(cè)師生的教與學(xué)

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)15

        一、集合有關(guān)概念

        1. 集合的含義

        2. 集合的中元素的三個(gè)特性:

        (1) 元素的確定性,

        (2) 元素的互異性,

        (3) 元素的無(wú)序性,

        3.集合的表示:{ … } 如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

        (1) 用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

        (2) 集合的表示方法:列舉法與描述法。

        ? 注意:常用數(shù)集及其記法:

        非負(fù)整數(shù)集(即自然數(shù)集) 記作:N

        正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R

        1) 列舉法:{a,b,c……}

        2) 描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

        3) 語(yǔ)言描述法:例:{不是直角三角形的三角形}

        4) Venn圖:

        4、集合的分類(lèi):

        (1) 有限集 含有有限個(gè)元素的集合

        (2) 無(wú)限集 含有無(wú)限個(gè)元素的集合

        (3) 空集 不含任何元素的集合 例:{x|x2=-5}

        二、集合間的基本關(guān)系

        1.“包含”關(guān)系—子集

        注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

        反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

        2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5)

        實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

        即:① 任何一個(gè)集合是它本身的子集。A?A

        ②真子集:如果A?B,且A? B那就說(shuō)集合A是集合B的真子集,記作A B(或B A)

       、廴绻 A?B, B?C ,那么 A?C

       、 如果A?B 同時(shí) B?A 那么A=B

        3. 不含任何元素的集合叫做空集,記為Φ

        規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

        ? 有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集

        三、集合的運(yùn)算

        運(yùn)算類(lèi)型 交 集 并 集 補(bǔ) 集

        定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.

        由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}).

        設(shè)S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

        二、函數(shù)的有關(guān)概念

        1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域.

        注意:

        1.定義域:能使函數(shù)式有意義的實(shí)數(shù)x的'集合稱(chēng)為函數(shù)的定義域。

        求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:

        (1)分式的分母不等于零;

        (2)偶次方根的被開(kāi)方數(shù)不小于零;

        (3)對(duì)數(shù)式的真數(shù)必須大于零;

        (4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.

        (5)如果函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

        (6)指數(shù)為零底不可以等于零,

        (7)實(shí)際問(wèn)題中的函數(shù)的定義域還要保證實(shí)際問(wèn)題有意義.

        相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無(wú)關(guān));②定義域一致 (兩點(diǎn)必須同時(shí)具備)

        2.值域 : 先考慮其定義域

        (1)觀察法

        (2)配方法

        (3)代換法

        3. 函數(shù)圖象知識(shí)歸納

        (1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(x) , (x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù) y=f(x),(x ∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過(guò)來(lái),以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上 .

        (2) 畫(huà)法

        A、 描點(diǎn)法:

        B、 圖象變換法

        常用變換方法有三種

        1) 平移變換

        2) 伸縮變換

        3) 對(duì)稱(chēng)變換

        4.區(qū)間的概念

        (1)區(qū)間的分類(lèi):開(kāi)區(qū)間、閉區(qū)間、半開(kāi)半閉區(qū)間

        (2)無(wú)窮區(qū)間

        (3)區(qū)間的數(shù)軸表示.

        5.映射

        一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱(chēng)對(duì)應(yīng)f:A B為從集合A到集合B的一個(gè)映射。記作f:A→B

        6.分段函數(shù)

        (1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。

        (2)各部分的自變量的取值情況.

        (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

        補(bǔ)充:復(fù)合函數(shù)

        如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱(chēng)為f、g的復(fù)合函數(shù)。

        二.函數(shù)的性質(zhì)

        1.函數(shù)的單調(diào)性(局部性質(zhì))

        (1)增函數(shù)

        設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對(duì)于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1

        如果對(duì)于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1f(x2),那么就說(shuō)f(x)在這個(gè)區(qū)間上是減函數(shù).區(qū)間D稱(chēng)為y=f(x)的單調(diào)減區(qū)間.

        注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);

        (2) 圖象的特點(diǎn)

        如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說(shuō)函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.

        (3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

        (A) 定義法:

        ○1 任取x1,x2∈D,且x1

        ○2 作差f(x1)-f(x2);

        ○3 變形(通常是因式分解和配方);

        ○4 定號(hào)(即判斷差f(x1)-f(x2)的正負(fù));

        ○5 下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).

        (B)圖象法(從圖象上看升降)

        (C)復(fù)合函數(shù)的單調(diào)性

        復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”

        注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫(xiě)成其并集.

        8.函數(shù)的奇偶性(整體性質(zhì))

        (1)偶函數(shù)

        一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

        (2).奇函數(shù)

        一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

        (3)具有奇偶性的函數(shù)的圖象的特征

        偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng).

        利用定義判斷函數(shù)奇偶性的步驟:

        ○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對(duì)稱(chēng);

        ○2確定f(-x)與f(x)的關(guān)系;

        ○3作出相應(yīng)結(jié)論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù).

        (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來(lái)判定;

        (3)利用定理,或借助函數(shù)的圖象判定 .

        9、函數(shù)的解析表達(dá)式

        (1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的定義域.

        (2)求函數(shù)的解析式的主要方法有:

        1) 湊配法

        2) 待定系數(shù)法

        3) 換元法

        4) 消參法

        10.函數(shù)最大(小)值(定義見(jiàn)課本p36頁(yè))

        ○1 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值

        ○2 利用圖象求函數(shù)的最大(小)值

        ○3 利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值:

        如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);

        如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)16

        知識(shí)點(diǎn)總結(jié)

        本節(jié)知識(shí)包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對(duì)稱(chēng)性和函數(shù)的圖象等知識(shí)點(diǎn)。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對(duì)稱(chēng)性是學(xué)習(xí)函數(shù)的圖象的基礎(chǔ),函數(shù)的圖象是它們的綜合。所以理解了前面的幾個(gè)知識(shí)點(diǎn),函數(shù)的圖象就迎刃而解了。

        一、函數(shù)的單調(diào)性

        1、函數(shù)單調(diào)性的定義

        2、函數(shù)單調(diào)性的判斷和證明:(1)定義法 (2)復(fù)合函數(shù)分析法 (3)導(dǎo)數(shù)證明法 (4)圖象法

        二、函數(shù)的奇偶性和周期性

        1、函數(shù)的奇偶性和周期性的定義

        2、函數(shù)的奇偶性的判定和證明方法

        3、函數(shù)的周期性的判定方法

        三、函數(shù)的圖象

        1、函數(shù)圖象的.作法 (1)描點(diǎn)法 (2)圖象變換法

        2、圖象變換包括圖象:平移變換、伸縮變換、對(duì)稱(chēng)變換、翻折變換。

        常見(jiàn)考法

        本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的重點(diǎn)和難點(diǎn)。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。

        誤區(qū)提醒

        1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問(wèn)題定義域優(yōu)先的原則”。

        2、單調(diào)區(qū)間必須用區(qū)間來(lái)表示,不能用集合或不等式,單調(diào)區(qū)間一般寫(xiě)成開(kāi)區(qū)間,不必考慮端點(diǎn)問(wèn)題。

        3、在多個(gè)單調(diào)區(qū)間之間不能用“或”和“ ”連接,只能用逗號(hào)隔開(kāi)。

        4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點(diǎn)對(duì)稱(chēng),則函數(shù)一定是非奇非偶函數(shù)。

        5、作函數(shù)的圖象,一般是首先化簡(jiǎn)解析式,然后確定用描點(diǎn)法或圖象變換法作函數(shù)的圖象。

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)17

        二次函數(shù)

        I.定義與定義表達(dá)式

        一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

        (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大.)

        則稱(chēng)y為x的二次函數(shù)。

        二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

        II.二次函數(shù)的三種表達(dá)式

        一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

        頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)]

        交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]

        注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

        h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

        III.二次函數(shù)的圖像

        在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

        IV.拋物線的性質(zhì)

        1.拋物線是軸對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸為直線x=-b/2a。對(duì)稱(chēng)軸與拋物線的`交點(diǎn)為拋物線的頂點(diǎn)P。

        特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱(chēng)軸是y軸(即直線x=0)

        2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

        P(-b/2a,(4ac-b^2)/4a)

        當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。

        3.二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。

        當(dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a<0時(shí),拋物線向下開(kāi)口。

        |a|越大,則拋物線的開(kāi)口越小。

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)18

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)

        指數(shù)函數(shù)

        (一)指數(shù)與指數(shù)冪的運(yùn)算

        1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

        當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開(kāi)方數(shù)(radicand).

        當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒(méi)有偶次方根;0的任何次方根都是0,記作。

        注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),

        2.分?jǐn)?shù)指數(shù)冪

        正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

        0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義

        指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

        3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)

        (二)指數(shù)函數(shù)及其性質(zhì)

        1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽.

        注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.

        2、指數(shù)函數(shù)的圖象和性質(zhì)

        高一上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)梳理

        空間幾何體表面積體積公式:

        1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

        2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

        3、a-邊長(zhǎng),S=6a2,V=a3

        4、長(zhǎng)方體a-長(zhǎng),b-寬,c-高S=2(ab+ac+bc)V=abc

        5、棱柱S-h-高V=Sh

        6、棱錐S-h-高V=Sh/3

        7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

        8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6

        9、圓柱r-底半徑,h-高,C—底面周長(zhǎng)S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h

        10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)

        11、r-底半徑h-高V=πr^2h/3

        12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6

        14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

        15、球臺(tái)r1和r2-球臺(tái)上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

        16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4

        17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

        人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)梳理

        1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

        (1)棱柱:

        定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

        分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

        表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱。

        幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

        (2)棱錐

        定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。

        分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

        表示:用各頂點(diǎn)字母,如五棱錐

        幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

        (3)棱臺(tái):

        定義:用一個(gè)平行于棱錐底面的'平面去截棱錐,截面和底面之間的部分。

        分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等

        表示:用各頂點(diǎn)字母,如五棱臺(tái)

        幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

        (4)圓柱:

        定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。

        幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開(kāi)圖是一個(gè)矩形。

        (5)圓錐:

        定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。

        幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)扇形。

        (6)圓臺(tái):

        定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

        幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)弓形。

        (7)球體:

        定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

        幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

        2、空間幾何體的三視圖

        定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

        注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度;

        俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度;

        側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

        3、空間幾何體的直觀圖——斜二測(cè)畫(huà)法

        斜二測(cè)畫(huà)法特點(diǎn):

       、僭瓉(lái)與x軸平行的線段仍然與x平行且長(zhǎng)度不變;

        ②原來(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半。

        高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)19

        【公式一】

        設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

        sin(2kπ+α)=sinα(k∈Z)

        cos(2kπ+α)=cosα(k∈Z)

        tan(2kπ+α)=tanα(k∈Z)

        cot(2kπ+α)=cotα(k∈Z)

        【公式二】

        設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:

        sin(π+α)=-sinα

        cos(π+α)=-cosα

        tan(π+α)=tanα

        cot(π+α)=cotα

        【公式三】

        任意角α與-α的三角函數(shù)值之間的關(guān)系:

        sin(-α)=-sinα

        cos(-α)=cosα

        tan(-α)=-tanα

        cot(-α)=-cotα

        【公式四】

        利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:

        sin(π-α)=sinα

        cos(π-α)=-cosα

        tan(π-α)=-tanα

        cot(π-α)=-cotα

        【公式五】

        利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:

        sin(2π-α)=-sinα

        cos(2π-α)=cosα

        tan(2π-α)=-tanα

        cot(2π-α)=-cotα

        【公式六】

        π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:

        sin(π/2+α)=cosα

        cos(π/2+α)=-sinα

        tan(π/2+α)=-cotα

        cot(π/2+α)=-tanα

        sin(π/2-α)=cosα

        cos(π/2-α)=sinα

        tan(π/2-α)=cotα

        cot(π/2-α)=tanα

        sin(3π/2+α)=-cosα

        cos(3π/2+α)=sinα

        tan(3π/2+α)=-cotα

        cot(3π/2+α)=-tanα

        sin(3π/2-α)=-cosα

        cos(3π/2-α)=-sinα

        tan(3π/2-α)=cotα

        cot(3π/2-α)=tanα

        (以上k∈Z)

        【高一數(shù)學(xué)函數(shù)復(fù)習(xí)資料】

        一、定義與定義式:

        自變量x和因變量y有如下關(guān)系:

        y=kx+b

        則此時(shí)稱(chēng)y是x的一次函數(shù)。

        特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。

        即:y=kx(k為常數(shù),k≠0)

        二、一次函數(shù)的性質(zhì):

        的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k

        即:y=kx+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))

        當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。

        三、一次函數(shù)的圖像及性質(zhì):

        作法與圖形:通過(guò)如下3個(gè)步驟

        (1)列表;

        (2)描點(diǎn);

        (3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))

        性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過(guò)原點(diǎn)。

        ,b與函數(shù)圖像所在象限:

        當(dāng)k>0時(shí),直線必通過(guò)一、三象限,y隨x的增大而增大;

        當(dāng)k

        當(dāng)b>0時(shí),直線必通過(guò)一、二象限;

        當(dāng)b=0時(shí),直線通過(guò)原點(diǎn)

        當(dāng)b

        特別地,當(dāng)b=O時(shí),直線通過(guò)原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

        這時(shí),當(dāng)k>0時(shí),直線只通過(guò)一、三象限;當(dāng)k

        四、確定一次函數(shù)的表達(dá)式:

        已知點(diǎn)A(x1,y1);B(x2,y2),請(qǐng)確定過(guò)點(diǎn)A、B的一次函數(shù)的表達(dá)式。

        (1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。

        (2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個(gè)方程:y1=kx1+b……①和y2=kx2+b……②

        (3)解這個(gè)二元一次方程,得到k,b的'值。

        (4)最后得到一次函數(shù)的表達(dá)式。

        五、一次函數(shù)在生活中的應(yīng)用:

        當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù)。s=vt。

        當(dāng)水池抽水速度f(wàn)一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。

        六、常用公式:(不全,希望有人補(bǔ)充)

        求函數(shù)圖像的k值:(y1-y2)/(x1-x2)

        求與x軸平行線段的中點(diǎn):|x1-x2|/2

        求與y軸平行線段的中點(diǎn):|y1-y2|/2

        求任意線段的長(zhǎng):√(x1-x2)^2+(y1-y2)^2(注:根號(hào)下(x1-x2)與(y1-y2)的平方和)

      【高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

      高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)12-15

      高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)01-03

      高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)12-07

      高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)03-08

      高一數(shù)學(xué)必修1知識(shí)點(diǎn)總結(jié)09-08

      高一數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)11-08

      高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)歸納02-15

      高一必修一數(shù)學(xué)集合知識(shí)點(diǎn)總結(jié)12-03

      高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)歸納01-14

      高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)15篇11-16