在线视频国产欧美另类,偷拍亚洲一区一区二区三区,日韩中文字幕在线视频,日本精品久久久久中文字幕

<small id="qpqhz"></small>
  • <legend id="qpqhz"></legend>

      <td id="qpqhz"><strong id="qpqhz"></strong></td>
      <small id="qpqhz"><menuitem id="qpqhz"></menuitem></small>
    1. 函數(shù)求導法則

      回答
      瑞文問答

      2024-09-25

      求導是數(shù)學計算中的一個計算方法,當自變量的增量趨于零時,因變量的增量與自變量的增量之商的極限。在一個函數(shù)存在導數(shù)時,稱這個函數(shù)可導?蓪У暮瘮(shù)一定連續(xù)。不連續(xù)的函數(shù)一定不可導。

      擴展資料

        函數(shù)的定義通常分為傳統(tǒng)定義和近代定義,函數(shù)的兩個定義本質(zhì)是相同的,只是敘述概念的出發(fā)點不同,傳統(tǒng)定義是從運動變化的觀點出發(fā),而近代定義是從集合、映射的觀點出發(fā)。

        函數(shù)的近代定義是給定一個數(shù)集A,假設其中的元素為x,對A中的元素x施加對應法則f,記作f(x),得到另一數(shù)集B,假設B中的元素為y,則y與x之間的等量關系可以用y=f(x)表示,函數(shù)概念含有三個要素:定義域A、值域C和對應法則f。其中核心是對應法則f,它是函數(shù)關系的本質(zhì)特征。