高中數(shù)學教案(精選16篇)
作為一位兢兢業(yè)業(yè)的人民教師,常常要寫一份優(yōu)秀的教案,借助教案可以更好地組織教學活動。那要怎么寫好教案呢?以下是小編整理的高中數(shù)學教案,歡迎大家借鑒與參考,希望對大家有所幫助。
高中數(shù)學教案 1
教學目標
(1)了解用坐標法研究幾何問題的方法,了解解析幾何的基本問題。
(2)理解曲線的方程、方程的曲線的概念,能根據(jù)曲線的已知條件求出曲線的方程,了解兩條曲線交點的概念。
(3)通過曲線方程概念的教學,培養(yǎng)學生數(shù)與形相互聯(lián)系、對立統(tǒng)一的辯證唯物主義觀點。
。4)通過求曲線方程的教學,培養(yǎng)學生的轉化能力和全面分析問題的能力,幫助學生理解解析幾何的思想方法。
(5)進一步理解數(shù)形結合的思想方法。
教學建議
教材分析
(1)知識結構
曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質(zhì)。曲線方程的概念和求曲線方程的問題又有內(nèi)在的邏輯順序。前者回答什么是曲線方程,后者解決如何求出曲線方程。至于用曲線方程研究曲線性質(zhì)則更在其后,本節(jié)不予研究。因此,本節(jié)涉及曲線方程概念和求曲線方程兩大基本問題。
。2)重點、難點分析
①本節(jié)內(nèi)容教學的重點是使學生理解曲線方程概念和掌握求曲線方程方法,以及領悟坐標法和解析幾何的思想。
、诒竟(jié)的難點是曲線方程的概念和求曲線方程的方法。
教法建議
(1)曲線方程的概念是解析幾何的核心概念,也是基礎概念,教學中應從直線方程概念和軌跡概念入手,通過簡單的實例引出曲線的點集與方程的解集之間的對應關系,說明曲線與方程的對應關系。曲線與方程對應關系的基礎是點與坐標的對應關系。注意強調(diào)曲線方程的完備性和純粹性。
(2)可以結合已經(jīng)學過的.直線方程的知識幫助學生領會坐標法和解析幾何的思想,學習解析幾何的意義和要解決的問題,為學習求曲線的方程做好邏輯上的和心理上的準備。
(3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準則。
。4)從集合與對應的觀點可以看得更清楚:
設 表示曲線 上適合某種條件的點 的集合;
表示二元方程的解對應的點的坐標的集合。
可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”,即
。5)在學習求曲線方程的方法時,應從具體實例出發(fā),引導學生從曲線的幾何條件,一步步地、自然而然地過渡到代數(shù)方程(曲線的方程),這個過渡是一個從幾何向代數(shù)不斷轉化的過程,在這個過程中提醒學生注意轉化是否為等價的,這將決定第五步如何做。同時教師不要生硬地給出或總結出求解步驟,應在充分分析實例的基礎上讓學生自然地獲得。教學中對課本例2的解法分析很重要。
這五個步驟的實質(zhì)是將產(chǎn)生曲線的幾何條件逐步轉化為代數(shù)方程,即
文字語言中的幾何條件 數(shù)學符號語言中的等式 數(shù)學符號語言中含動點坐標 , 的代數(shù)方程 簡化了的 , 的代數(shù)方程
由此可見,曲線方程就是產(chǎn)生曲線的幾何條件的一種表現(xiàn)形式,這個形式的特點是“含動點坐標的代數(shù)方程!
(6)求曲線方程的問題是解析幾何中一個基本的問題和長期的任務,不是一下子就徹底解決的,求解的方法是在不斷的學習中掌握的,教學中要把握好“度”。
高中數(shù)學教案 2
[核心必知]
1、預習教材,問題導入
根據(jù)以下提綱,預習教材P6~P9,回答下列問題、
。1)常見的程序框有哪些?
提示:終端框(起止框),輸入、輸出框,處理框,判斷框、
(2)算法的基本邏輯結構有哪些?
提示:順序結構、條件結構和循環(huán)結構、
2、歸納總結,核心必記
(1)程序框圖
程序框圖又稱流程圖,是一種用程序框、流程線及文字說明來表示算法的圖形、
在程序框圖中,一個或幾個程序框的組合表示算法中的一個步驟;帶有方向箭頭的流程線將程序框連接起來,表示算法步驟的執(zhí)行順序、
。2)常見的程序框、流程線及各自表示的功能
圖形符號名稱功能
終端框(起止框)表示一個算法的起始和結束
輸入、輸出框表示一個算法輸入和輸出的信息
處理框(執(zhí)行框)賦值、計算
判斷框判斷某一條件是否成立,成立時在出口處標明“是”或“Y”;不成立時標明“否”或“N”
流程線連接程序框
○連接點連接程序框圖的`兩部分
。3)算法的基本邏輯結構
、偎惴ǖ娜N基本邏輯結構
算法的三種基本邏輯結構為順序結構、條件結構和循環(huán)結構,盡管算法千差萬別,但都是由這三種基本邏輯結構構成的
②順序結構
順序結構是由若干個依次執(zhí)行的步驟組成的這是任何一個算法都離不開的基本結構,用程序框圖表示為:
[問題思考]
。1)一個完整的程序框圖一定是以起止框開始,同時又以起止框表示結束嗎?
提示:由程序框圖的概念可知一個完整的程序框圖一定是以起止框開始,同時又以起止框表示結束、
。2)順序結構是任何算法都離不開的基本結構嗎?
提示:根據(jù)算法基本邏輯結構可知順序結構是任何算法都離不開的基本結構、
[課前反思]
通過以上預習,必須掌握的幾個知識點:
。1)程序框圖的概念:
(2)常見的程序框、流程線及各自表示的功能:
。3)算法的三種基本邏輯結構:
(4)順序結構的概念及其程序框圖的表示:
問題背景:計算1×2+3×4+5×6+…+99×100。
[思考1]能否設計一個算法,計算這個式子的值。
提示:能。
[思考2]能否采用更簡潔的方式表述上述算法過程。
提示:能,利用程序框圖。
[思考3]畫程序框圖時應遵循怎樣的規(guī)則?
名師指津:
。1)使用標準的框圖符號。
(2)框圖一般按從上到下、從左到右的方向畫。
。3)除判斷框外,其他程序框圖的符號只有一個進入點和一個退出點,判斷框是一個具有超過一個退出點的程序框。
。4)在圖形符號內(nèi)描述的語言要非常簡練清楚。
(5)流程線不要忘記畫箭頭,因為它是反映流程執(zhí)行先后次序的,如果不畫出箭頭就難以判斷各框的執(zhí)行順序。
高中數(shù)學教案 3
教學目標
。1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;
。2)了解排列和排列數(shù)的意義,能根據(jù)具體的問題,寫出符合要求的排列;
。3)掌握排列數(shù)公式,并能根據(jù)具體的問題,寫出符合要求的排列數(shù);
。4)會分析與數(shù)字有關的排列問題,培養(yǎng)學生的抽象能力和邏輯思維能力;
(5)通過對排列應用問題的學習,讓學生通過對具體事例的觀察、歸納中找出規(guī)律,得出結論,以培養(yǎng)學生嚴謹?shù)膶W習態(tài)度。
教學建議
一、知識結構
二、重點難點分析
本小節(jié)的重點是排列的定義、排列數(shù)及排列數(shù)的公式,并運用這個公式去解決有關排列數(shù)的應用問題。難點是導出排列數(shù)的公式和解有關排列的應用題。突破重點、難點的關鍵是對加法原理和乘法原理的掌握和運用,并將這兩個原理的基本思想方法貫穿在解決排列應用問題當中。
從n個不同元素中任取m(m≤n)個元素,按照一定的順序排成一列,稱為從n個不同元素中任取m個元素的一個排列。因此,兩個相同排列,當且僅當他們的元素完全相同,并且元素的排列順序也完全相同。排列數(shù)是指從n個不同元素中任取m(m≤n)個元素的所有不同排列的種數(shù),只要弄清相同排列、不同排列,才有可能計算相應的排列數(shù)。排列與排列數(shù)是兩個概念,前者是具有m個元素的排列,后者是這種排列的不同種數(shù)。從集合的角度看,從n個元素的有限集中取出m個組成的有序集,相當于一個排列,而這種有序集的個數(shù),就是相應的排列數(shù)。
公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解。要重點分析好的推導。
排列的應用題是本節(jié)教材的難點,通過本節(jié)例題的分析,應注意培養(yǎng)學生解決應用問題的能力。
在分析應用題的解法時,教材上先畫出框圖,然后分析逐次填入時的種數(shù),這樣解釋比較直觀,教學上要充分利用,要求學生作題時也應盡量采用。
在教學排列應用題時,開始應要求學生寫解法要有簡要的文字說明,防止單純的只寫一個排列數(shù),這樣可以培養(yǎng)學生的分析問題的能力,在基本掌握之后,可以逐漸地不作這方面的要求。
三、教法建議
、僭谥v解排列數(shù)的.概念時,要注意區(qū)分“排列數(shù)”與“一個排列”這兩個概念。一個排列是指“從n個不同元素中,任取出m個元素,按照一定的順序擺成一排”,它不是一個數(shù),而是具體的一件事;排列數(shù)是指“從n個不同元素中取出m個元素的所有排列的個數(shù)”,它是一個數(shù)。例如,從3個元素a,b,c中每次取出2個元素,按照一定的順序排成一排,有如下幾種:
ab,ac,ba,bc,ca,cb,
其中每一種都叫一個排列,共有6種,而數(shù)字6就是排列數(shù),符號表示排列數(shù)。
、谂帕械亩x中包含兩個基本內(nèi)容,一是“取出元素”,二是“按一定順序排列”。
從定義知,只有當元素完全相同,并且元素排列的順序也完全相同時,才是同一個排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列。
在定義中“一定順序”就是說與位置有關,在實際問題中,要由具體問題的性質(zhì)和條件來決定,這一點要特別注意,這也是與后面學習的組合的根本區(qū)別。
在排列的定義中,如果有的書上叫選排列,如果,此時叫全排列。
要特別注意,不加特殊說明,本章不研究重復排列問題。
、坳P于排列數(shù)公式的推導的教學。公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解。課本上用的是不完全歸納法,先推導,…,再推廣到,這樣由特殊到一般,由具體到抽象的講法,學生是不難理解的。
導出公式后要分析這個公式的構成特點,以便幫助學生正確地記憶公式,防止學生在“n”、“m”比較復雜的時候把公式寫錯。這個公式的特點可見課本第229頁的一段話:“其中,公式右邊第一個因數(shù)是n,后面每個因數(shù)都比它前面一個因數(shù)少1,最后一個因數(shù)是,共m個因數(shù)相乘。”這實際是講三個特點:第一個因數(shù)是什么?最后一個因數(shù)是什么?一共有多少個連續(xù)的自然數(shù)相乘。
公式是在引出全排列數(shù)公式后,將排列數(shù)公式變形后得到的公式。對這個公式指出兩點:
(1)在一般情況下,要計算具體的排列數(shù)的值,常用前一個公式,而要對含有字母的排列數(shù)的式子進行變形或作有關的論證,要用到這個公式,教材中第230頁例2就是用這個公式證明的問題;
(2)為使這個公式在時也能成立,規(guī)定,如同時一樣,是一種規(guī)定,因此,不能按階乘數(shù)的原意作解釋。
、芙ㄗh應充分利用樹形圖對問題進行分析,這樣比較直觀,便于理解。
、輰W生在開始做排列應用題的作業(yè)時,應要求他們寫出解法的簡要說明,而不能只列出算式、得出答數(shù),這樣有利于學生得更加扎實。隨著學生解題熟練程度的提高,可以逐步降低這種要求。
高中數(shù)學教案 4
三維目標:
1、知識與技能:正確理解隨機抽樣的概念,掌握抽簽法、隨機數(shù)表法的一般步驟;
2、過程與方法:
(1)能夠從現(xiàn)實生活或其他學科中提出具有一定價值的統(tǒng)計問題;
(2)在解決統(tǒng)計問題的過程中,學會用簡單隨機抽樣的方法從總體中抽取樣本。
3、情感態(tài)度與價值觀:通過對現(xiàn)實生活和其他學科中統(tǒng)計問題的提出,體會數(shù)學知識與現(xiàn)實世界及各學科知識之間的聯(lián)系,認識數(shù)學的重要性。
4、重點與難點:正確理解簡單隨機抽樣的概念,掌握抽簽法及隨機數(shù)法的步驟,并能靈活應用相關知識從總體中抽取樣本。
教學方法:
講練結合法
教學用具:
多媒體
課時安排:
1課時
教學過程:
一、問題情境
假設你作為一名食品衛(wèi)生工作人員,要對某食品店內(nèi)的一批小包裝餅干進行衛(wèi)生達標檢驗,你準備怎樣做?顯然,你只能從中抽取一定數(shù)量的餅干作為檢驗的樣本。(為什么?)那么,應當怎樣獲取樣本呢?
二、探究新知
1、統(tǒng)計的有關概念:總體:在統(tǒng)計學中,所有考察對象的全體叫做總體、個體:每一個考察的對象叫做個體、樣本:從總體中抽取的一部分個體叫做總體的一個樣本、樣本容量:樣本中個體的數(shù)目叫做樣本的容量、統(tǒng)計的基本思想:用樣本去估計總體、
2、簡單隨機抽樣的概念一般地,設一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內(nèi)的各個個體被抽到的機會都相等,就把這種抽樣方法叫做簡單隨機抽樣,這樣抽取的樣本,叫做簡單隨機樣本。
下列抽樣的方式是否屬于簡單隨機抽樣?為什么?
(1)從無限多個個體中抽取50個個體作為樣本。
(2)箱子里共有100個零件,從中選出10個零件進行質(zhì)量檢驗,在抽樣操作中,從中任意取出一個零件進行質(zhì)量檢驗后,再把它放回箱子。
(3)從8臺電腦中,不放回地隨機抽取2臺進行質(zhì)量檢查(假設8臺電腦已編好號,對編號隨機抽取)
3、常用的簡單隨機抽樣方法有:
(1)抽簽法的'定義。一般地,抽簽法就是把總體中的N個個體編號,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻后,每次從中抽取一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本。
思考?你認為抽簽法有什么優(yōu)點和缺點:當總體中的個體數(shù)很多時,用抽簽法方便嗎?例1、若已知高一(6)班總共有57人,現(xiàn)要抽取8位同學出來做游戲,請設計一個抽取的方法,要使得每位同學被抽到的機會相等。
分析:可以把57位同學的學號分別寫在大小,質(zhì)地都相同的紙片上,折疊或揉成小球,把紙片集中在一起并充分攪拌后,在從中個抽出8張紙片,再選出紙片上的學號對應的同學即可、基本步驟:第一步:將總體的所有N個個體從1至N編號;第二步:準備N個號簽分別標上這些編號,將號簽放在容器中攪拌均勻后每次抽取一個號簽,不放回地連續(xù)取n次;第三步:將取出的n個號簽上的號碼所對應的n個個體作為樣本。
(2)隨機數(shù)法的定義:利用隨機數(shù)表、隨機數(shù)骰子或計算機產(chǎn)生的隨機數(shù)進行抽樣,叫隨機數(shù)表法,這里僅介紹隨機數(shù)表法。怎樣利用隨機數(shù)表產(chǎn)生樣本呢?下面通過例子來說明,假設我們要考察某公司生產(chǎn)的500克袋裝牛奶的質(zhì)量是否達標,現(xiàn)從800袋牛奶中抽取60袋進行檢驗,利用隨機數(shù)表抽取樣本時,可以按照下面的步驟進行。第一步,先將800袋牛奶編號,可以編為000,001,799。
第二步,在隨機數(shù)表中任選一個數(shù),例如選出第8行第7列的數(shù)7(為了便于說明,下面摘取了附表1的第6行至第10行)。 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02 73 43 28第三步,從選定的數(shù)7開始向右讀(讀數(shù)的方向也可以是向左、向上、向下等),得到一個三位數(shù)785,由于785<799,說明號碼785在總體內(nèi),將它取出;
繼續(xù)向右讀,得到916,由于916>799,將它去掉,按照這種方法繼續(xù)向右讀,又取出567,199,507,依次下去,直到樣本的60個號碼全部取出,這樣我們就得到一個容量為60的樣本。
三、課堂練習
四、課堂小結
1、簡單隨機抽樣的概念一般地,設一個總體的個體數(shù)為N,如果通過逐個抽取的方法從中抽取一個樣本,且每次抽取時各個個體被抽到的概率相等,就稱這樣的抽樣為簡單隨機抽樣。
2、簡單隨機抽樣的方法:抽簽法隨機數(shù)表法
五、課后作業(yè)
P57練習1、2
六、板書設計
1、統(tǒng)計的有關概念
2、簡單隨機抽樣的概念
3、常用的簡單隨機抽樣方法有:
(1)抽簽法
(2)隨機數(shù)表法
4、課堂練習
高中數(shù)學教案 5
一、教材分析
1、教材地位和作用:二面角是我們?nèi)粘I钪薪?jīng)常見到的、很普通的一個空間圖形!岸娼恰笔侨私贪妗稊(shù)學》第二冊(下B)中9.7的內(nèi)容。它是在學生學過兩條異面直線所成的角、直線和平面所成角、又要重點研究的一種空間的角,它是為了研究兩個平面的垂直而提出的一個概念,也是學生進一步研究多面體的基礎。因此,它起著承上啟下的作用。通過本節(jié)課的學習還對學生系統(tǒng)地掌握直線和平面的知識乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。
2、教學目標:
知識目標:
(1)正確理解二面角及其平面角的概念,并能初步運用它們解決實際問題。
。2)進一步培養(yǎng)學生把空間問題轉化為平面問題的化歸思想。
能力目標:
(1)突出對類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學生的創(chuàng)新能力。
。2)通過對圖形的觀察、分析、比較和操作來強化學生的動手操作能力。
德育目標:
(1)使學生認識到數(shù)學知識來自實踐,并服務于實踐,增強學生應用數(shù)學的意識
(2)通過揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進一步培養(yǎng)學生聯(lián)系的辯證唯物主義觀點。
情感目標:在平等的教學氛圍中,通過學生之間、師生之間的交流、合作和評價,拉近學生之間、師生之間的情感距離。
3、重點、難點:
重點:“二面角”和“二面角的平面角”的概念
難點:“二面角的平面角”概念的形成過程
二、教法分析
1、教學方法:在引入課題時,我采用多媒體、實物演示法,在新課探究中采用問題啟導、活動探究和類比發(fā)現(xiàn)法,在形成技能時以訓練法、探究研討法為主。
2、教學控制與調(diào)節(jié)的措施:本節(jié)課由于充分運用了多媒體和實物教具,預計學生對二面角及二面角平面角的概念能夠理解,根據(jù)學生及教學的實際情況,估計二面角的具體求法一節(jié)課內(nèi)完成有一定的困難,所以將其放在下節(jié)課。
3、教學手段:教學手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學需要,確定利用多媒體課件來輔助教學;此外,為加強直觀教學,還要預先做好一些二面角的模型。
三、學法指導
1、樂學:在整個學習過程中學生要保持強烈的好奇心和求知欲,不斷強化自己的創(chuàng)新意識,全身心地投入到學習中去,成為學習的主人。
2、學會:在掌握基礎知識的同時,學生要注意領會化歸、類比聯(lián)想等數(shù)學思想方法的運用,學會建立完善的認知結構。
3、會學:通過自己親身參與,學生要領會復習類比和深入研究這兩種知識創(chuàng)新的方法,從而既學到知識,又學會創(chuàng)新,既能解決問題,更能發(fā)現(xiàn)問題。
四、教學過程
心理學研究表明,當學生明確數(shù)學概念的學習目的和意義時,就會對概念的學習產(chǎn)生濃厚的興趣。創(chuàng)設問題情境,激發(fā)了學生的創(chuàng)新意識,營造了創(chuàng)新思維的氛圍。
。ㄒ唬⒍娼
1、揭示概念產(chǎn)生背景。
問題情境1、在平面幾何中“角”是怎樣定義的?
問題情境2、在立體幾何中我們還學習了哪些角?
問題情境3、運用多媒體和身邊的實例,展示我們遇到的另一種空間的`角——二面角(板書課題)。
通過這三個問題,打開了學生的原有認知結構,為知識的創(chuàng)新做好了準備;同時也讓學生領會到,二面角這一概念的產(chǎn)生是因為它與我們的生活密不可分,激發(fā)學生的求知欲。
2、展現(xiàn)概念形成過程。
問題情境4、那么,應該如何定義二面角呢?
創(chuàng)設這個問題情境,為學生創(chuàng)新思維的展開提供了空間。引導學生回憶平面幾何中“角”這一概念的引入過程。教師應注意多讓學生說,對于學生的創(chuàng)新意識和創(chuàng)新結果,教師要給與積極的評價。
問題情境5、同學們能舉出一些二面角的實例嗎?通過實際運用,可以促使學生更加深刻地理解概念。
(二)、二面角的平面角
1、揭示概念產(chǎn)生背景。平面幾何中可以把角理解為是一個旋轉量,同樣一個二面角也可以看作是一個半平面以其棱為軸旋轉而成的,也是一個旋轉量。說明二面角不僅有大小,而且其大小是唯一確定的。平面與平面的位置關系,總的說來只有相交或平行兩種情況,為了對相交平面的相互位置作進一步的探討,我們有必要來研究二面角的度量問題。
問題情境6、二面角的大小應該怎么度量?能否轉化為平面角來處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產(chǎn)生的背景。
2、展現(xiàn)概念形成過程
。1)、類比。教師啟發(fā),尋找類比聯(lián)想的對象。
問題情境7、我們以前碰到過類似的問題嗎?引導學生回憶前面所學過的兩種空間角的定義,電腦演示以提高效率。
問題情境8、兩定義的共同點是什么?生:空間角總是轉化為平面的角,并且這個角是唯一確定的。
問題情境9、這個平面的角的頂點及兩邊是如何確定的?
。2)、提出猜想:二面角的大小也可通過平面的角來定義。對學生提出的猜想,教師應該給予充分的肯定,以培養(yǎng)他們大膽猜想的意識和習慣,這對強化他們的創(chuàng)新意識大有幫助。
問題情境10、那么,這個角的頂點及兩邊應如何確定呢?生:頂點放在棱上,兩邊分別放在兩個面內(nèi)。這也是學生直覺思維的結果。
。3)、探索實驗。通過實驗,激發(fā)了學生的學習興趣,培養(yǎng)了學生的動手操作能力。
。4)、繼續(xù)探索,得到定義。
問題情境11、那么,怎樣使這個角的大小唯一確定呢?師生共同探討后發(fā)現(xiàn),角的頂點確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內(nèi)唯一確定,聯(lián)想到平面內(nèi)過直線上一點的垂線的唯一性,由此發(fā)現(xiàn)二面角的大小的一種描述方法。
(5)、自我驗證:要求學生閱讀課本上的定義。并說明定義的合理性,教師作適當?shù)囊龑,并加以理論證明。
。ㄈ、二面角及其平面角的畫法
主要分為直立式和平臥式兩種,用電腦《幾何畫板》作圖。
(四)、范例分析
為鞏固學生所學知識,由于時間的關系設置了一道例題。來源于實際生活,不但培養(yǎng)了學生分析問題和解決問題的能力,也讓學生領會到數(shù)學概念來自生活實際,并服務于生活實際,從而增強他們應用數(shù)學的意識。
例:一張邊長為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個1200二面角,求此時B、c兩點間的距離。
分析:涉及二面角的計算問題,關鍵是找出(或作出)該二面角的平面角。引導學生充分利用已知圖形的性質(zhì),最后發(fā)現(xiàn)可由定義找出該二面角的平面角。可讓學生先做,為調(diào)動學生的積極性,并增加學生的參與感,活躍課堂的氣氛,教師可給學生板演的機會。教師講評時強調(diào)解題規(guī)范即必須證明∠BDc是二面角B—AD—c的平面角。
變式訓練:圖中共有幾個二面角?能求出它們的大小嗎?根據(jù)課堂實際情況,本題的變式訓練也可作為課后思考題。
題后反思:(1)解題過程中必須證明∠BDc是二面角B—AD—c的平面角。
。2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)
。ㄎ澹、練習、小結與作業(yè)
練習:習題9.7的第3題
小結在復習完二面角及其平面角的概念后,要求學生對空間中三種角加以比較、歸納,以促成學生建立起空間中角這一概念系統(tǒng)。同時要求學生對本節(jié)課的學習方法進行總結,領會復習類比和深入研究這兩種知識創(chuàng)新的方法。
作業(yè):習題9.7的第4題
思考題:見例題
五、板書設計(見課件)
以上是我對《二面角》授課的初步設想,不足之處,懇請大家批評指正,謝謝!
高中數(shù)學教案 6
教學目的:
掌握圓的標準方程,并能解決與之有關的問題
教學重點:
圓的標準方程及有關運用
教學難點:
標準方程的靈活運用
教學過程:
一、導入新課,探究標準方程
二、掌握知識,鞏固練習
練習:
1、說出下列圓的方程
、艌A心(3,—2)半徑為5
⑵圓心(0,3)半徑為3
2、指出下列圓的圓心和半徑
、牛▁—2)2+(y+3)2=3
⑵x2+y2=2
、莤2+y2—6x+4y+12=0
3、判斷3x—4y—10=0和x2+y2=4的位置關系
4、圓心為(1,3),并與3x—4y—7=0相切,求這個圓的方程
三、引伸提高,講解例題
例1、圓心在y=—2x上,過p(2,—1)且與x—y=1相切求圓的'方程(突出待定系數(shù)的數(shù)學方法)
練習:1、某圓過(—2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過A(—10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。
例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維)
四、小結練習P771,2,3,4
五、作業(yè)P811,2,3,4
高中數(shù)學教案 7
一、預習目標
預習《平面向量應用舉例》,體會向量是一種處理幾何問題、物理問題等的工具,建立實際問題與向量的聯(lián)系。
二、預習內(nèi)容
閱讀課本內(nèi)容,整理例題,結合向量的運算,解決實際的幾何問題、物理問題。另外,在思考一下幾個問題:
1、例1如果不用向量的方法,還有其他證明方法嗎?
2、利用向量方法解決平面幾何問題的“三步曲”是什么?
3、例3中,
、艦楹沃禃r|F1|最小,最小值是多少?
⑵|F1|能等于|G|嗎?為什么?
三、提出疑惑
同學們,通過你的自主學習,你還有哪些疑惑,請把它填在下面的表格中疑惑點疑惑內(nèi)容。
課內(nèi)探究學案
一、學習內(nèi)容
1、運用向量的有關知識(向量加減法與向量數(shù)量積的運算法則等)解決平面幾何和解析幾何中直線或線段的平行、垂直、相等、夾角和距離等問題。
2、運用向量的有關知識解決簡單的物理問題。
二、學習過程
探究一:
。1)向量運算與幾何中的結論"若,則,且所在直線平行或重合"相類比,你有什么體會?
。2)舉出幾個具有線性運算的幾何實例。
例1、證明:平行四邊形兩條對角線的平方和等于四條邊的平方和。
已知:平行四邊形ABCD。
求證:
試用幾何方法解決這個問題,利用向量的方法解決平面幾何問題的“三步曲”?
。1)建立平面幾何與向量的聯(lián)系,
(2)通過向量運算,研究幾何元素之間的關系,
。3)把運算結果“翻譯”成幾何關系。
例2,如圖,平行四邊形ABCD中,點E、F分別是AD、DC邊的中點,BE、BF分別與AC交于R、T兩點,你能發(fā)現(xiàn)AR、RT、TC之間的關系嗎?
探究二:兩個人提一個旅行包,夾角越大越費力。在單杠上做引體向上運動,兩臂夾角越小越省力。這些力的問題是怎么回事?
例3,在日常生活中,你是否有這樣的.經(jīng)驗:兩個人共提一個旅行包,夾角越大越費力;在單杠上作引體向上運動,兩臂的夾角越小越省力。你能從數(shù)學的角度解釋這種現(xiàn)象嗎?
請同學們結合剛才這個問題,思考下面的問題:
、艦楹沃禃r|F1|最小,最小值是多少?
、苵F1|能等于|G|嗎?為什么?
例4如圖,一條河的兩岸平行,河的寬度m,一艘船從A處出發(fā)到河對岸。已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,問行駛航程最短時,所用的時間是多少(精確到0.1min)?
變式訓練:兩個粒子A、B從同一源發(fā)射出來,在某一時刻,它們的位移分別為,
(1)寫出此時粒子B相對粒子A的位移s;
。2)計算s在方向上的投影。
三、反思總結
結合圖形特點,選定正交基底,用坐標表示向量進行運算解決幾何問題,體現(xiàn)幾何問題。
代數(shù)化的特點,數(shù)形結合的數(shù)學思想體現(xiàn)的淋漓盡致。向量作為橋梁工具使得運算簡練標致,又體現(xiàn)了數(shù)學的美。有關長方形、正方形、直角三角形等平行、垂直等問題常用此法。
本節(jié)主要研究了用向量知識解決平面幾何問題和物理問題;掌握向量法和坐標法,以及用向量解決實際問題的步驟。
高中數(shù)學教案 8
教學目標:
1、理解并掌握曲線在某一點處的切線的概念;
2、理解并掌握曲線在一點處的切線的斜率的定義以及切線方程的求法;
3、理解切線概念實際背景,培養(yǎng)學生解決實際問題的能力和培養(yǎng)學生轉化
問題的能力及數(shù)形結合思想。
教學重點:
理解并掌握曲線在一點處的切線的斜率的定義以及切線方程的求法。
教學難點:
用“無限逼近”、“局部以直代曲”的思想理解某一點處切線的斜率。
教學過程:
一、問題情境
1、問題情境。
如何精確地刻畫曲線上某一點處的變化趨勢呢?
如果將點P附近的曲線放大,那么就會發(fā)現(xiàn),曲線在點P附近看上去有點像是直線。
如果將點P附近的曲線再放大,那么就會發(fā)現(xiàn),曲線在點P附近看上去幾乎成了直線。事實上,如果繼續(xù)放大,那么曲線在點P附近將逼近一條確定的`直線,該直線是經(jīng)過點P的所有直線中最逼近曲線的一條直線。
因此,在點P附近我們可以用這條直線來代替曲線,也就是說,點P附近,曲線可以看出直線(即在很小的范圍內(nèi)以直代曲)。
2、探究活動。
如圖所示,直線l1,l2為經(jīng)過曲線上一點P的兩條直線,
。1)試判斷哪一條直線在點P附近更加逼近曲線;
。2)在點P附近能作出一條比l1,l2更加逼近曲線的直線l3嗎?
。3)在點P附近能作出一條比l1,l2,l3更加逼近曲線的直線嗎?
二、建構數(shù)學
切線定義: 如圖,設Q為曲線C上不同于P的一點,直線PQ稱為曲線的割線。 隨著點Q沿曲線C向點P運動,割線PQ在點P附近逼近曲線C,當點Q無限逼近點P時,直線PQ最終就成為經(jīng)過點P處最逼近曲線的直線l,這條直線l也稱為曲線在點P處的切線。這種方法叫割線逼近切線。
思考:如上圖,P為已知曲線C上的一點,如何求出點P處的切線方程?
三、數(shù)學運用
例1 試求在點(2,4)處的切線斜率。
解法一 分析:設P(2,4),Q(xQ,f(xQ)),
則割線PQ的斜率為:
當Q沿曲線逼近點P時,割線PQ逼近點P處的切線,從而割線斜率逼近切線斜率;
當Q點橫坐標無限趨近于P點橫坐標時,即xQ無限趨近于2時,kPQ無限趨近于常數(shù)4。
從而曲線f(x)=x2在點(2,4)處的切線斜率為4。
解法二 設P(2,4),Q(xQ,xQ2),則割線PQ的斜率為:
當?x無限趨近于0時,kPQ無限趨近于常數(shù)4,從而曲線f(x)=x2,在點(2,4)處的切線斜率為4。
練習 試求在x=1處的切線斜率。
解:設P(1,2),Q(1+Δx,(1+Δx)2+1),則割線PQ的斜率為:
當?x無限趨近于0時,kPQ無限趨近于常數(shù)2,從而曲線f(x)=x2+1在x=1處的切線斜率為2。
小結 求曲線上一點處的切線斜率的一般步驟:
(1)找到定點P的坐標,設出動點Q的坐標;
。2)求出割線PQ的斜率;
。3)當時,割線逼近切線,那么割線斜率逼近切線斜率。
思考 如上圖,P為已知曲線C上的一點,如何求出點P處的切線方程?
解 設
所以,當無限趨近于0時,無限趨近于點處的切線的斜率。
變式訓練
1.已知,求曲線在處的切線斜率和切線方程;
2.已知,求曲線在處的切線斜率和切線方程;
3.已知,求曲線在處的切線斜率和切線方程。
課堂練習
已知,求曲線在處的切線斜率和切線方程。
四、回顧小結
1、曲線上一點P處的切線是過點P的所有直線中最接近P點附近曲線的直線,則P點處的變化趨勢可以由該點處的切線反映(局部以直代曲)。
2、根據(jù)定義,利用割線逼近切線的方法, 可以求出曲線在一點處的切線斜率和方程。
五、課外作業(yè)
高中數(shù)學教案 9
教學目標
(1)了解算法的含義,體會算法思想。
(2)會用自然語言和數(shù)學語言描述簡單具體問題的算法;
(3)學習有條理地、清晰地表達解決問題的步驟,培養(yǎng)邏輯思維能力與表達能力。
教學重難點
重點:算法的含義、解二元一次方程組的算法設計。
難點:把自然語言轉化為算法語言。
情境導入
電影《神槍手》中描述的凌靖是一個天生的狙擊手,他百發(fā)百中,最難打的位置對他來說也是輕而易舉,是香港警察狙擊手隊伍的第一神槍手、作為一名狙擊手,要想成功地完成一次狙擊任務,一般要按步驟完成以下幾步:
第一步:觀察、等待目標出現(xiàn)(用望遠鏡或瞄準鏡);
第二步:瞄準目標;
第三步:計算(或估測)風速、距離、空氣濕度、空氣密度;
第四步:根據(jù)第三步的結果修正彈著點;
第五步:開槍;
第六步:迅速轉移(或隱蔽)
以上這種完成狙擊任務的方法、步驟在數(shù)學上我們叫算法。
課堂探究
預習提升
1、定義:算法可以理解為由基本運算及規(guī)定的運算順序所構成的完整的解題步驟,或者看成按照要求設計好的有限的確切的計算序列,并且這樣的步驟或序列能夠解決一類問題。
2、描述方式
自然語言、數(shù)學語言、形式語言(算法語言)、框圖。
3、算法的要求
(1)寫出的算法,必須能解決一類問題,且能重復使用;
(2)算法過程要能一步一步執(zhí)行,每一步執(zhí)行的操作,必須確切,不能含混不清,而且經(jīng)過有限步后能得出結果。
4、算法的特征
(1)有限性:一個算法應包括有限的操作步驟,能在執(zhí)行有窮的操作步驟之后結束。
(2)確定性:算法的計算規(guī)則及相應的計算步驟必須是唯一確定的。
(3)可行性:算法中的每一個步驟都是可以在有限的時間內(nèi)完成的基本操作,并能得到確定的結果。
(4)順序性:算法從初始步驟開始,分為若干個明確的步驟,前一步是后一步的前提,后一步是前一步的后續(xù),且除了最后一步外,每一個步驟只有一個確定的后續(xù)。
(5)不唯一性:解決同一問題的算法可以是不唯一的
課堂典例講練
命題方向1對算法意義的理解
例1、下列敘述中,
、僦矘湫枰\苗、挖坑、栽苗、澆水這些步驟;
②按順序進行下列運算:1+1=2,2+1=3,3+1=4,…99+1=100;
、蹚那鄭u乘動車到濟南,再從濟南乘飛機到倫敦觀看奧運會開幕式;
④3x>x+1;
、萸笏心鼙3整除的正數(shù),即3,6,9,12。
能稱為算法的個數(shù)為( )
A、2
B、3
C、4
D、5
【解析】根據(jù)算法的含義和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一個明確的步驟,不符合明確性;⑤的步驟是無窮的,與算法的有限性矛盾。
【答案】B
[規(guī)律總結]
1、正確理解算法的概念及其特點是解決問題的關鍵、
2、針對判斷語句是否是算法的問題,要看它的步驟是否是明確的和有效的,而且能在有限步驟之內(nèi)解決這一問題、
【變式訓練】下列對算法的理解不正確的是________
、僖粋算法應包含有限的步驟,而不能是無限的
、谒惴ǹ梢岳斫鉃橛苫具\算及規(guī)定的運算順序構成的完整的解題步驟
③算法中的每一步都應當有效地執(zhí)行,并得到確定的結果
④一個問題只能設計出一個算法
【解析】由算法的有限性指包含的步驟是有限的故①正確;
由算法的明確性是指每一步都是確定的故②正確;
由算法的每一步都是確定的,且每一步都應有確定的結果故③正確;
由對于同一個問題可以有不同的算法故④不正確。
【答案】④
命題方向2解方程(組)的算法
例2、給出求解方程組的一個算法。
[思路分析]解線性方程組的常用方法是加減消元法和代入消元法,這兩種方法沒有本質(zhì)的差別,為了適用于解一般的線性方程組,以便于在計算機上實現(xiàn),我們用高斯消元法(即先將方程組化為一個三角形方程組,再通過回代方程求出方程組的`解)解線性方程組、
[規(guī)范解答]方法一:算法如下:
第一步,①×(-2)+②,得(-2+5)y=-14+11
即方程組可化為
第二步,解方程③,可得y=-1,④
第三步,將④代入①,可得2x-1=7,x=4
第四步,輸出4,-1
方法二:算法如下:
第一步,由①式可以得到y(tǒng)=7-2x,⑤
第二步,把y=7-2x代入②,得x=4
第三步,把x=4代入⑤,得y=-1
第四步,輸出4,-1
[規(guī)律總結]1、本題用了2種方法求解,對于問題的求解過程,我們既要強調(diào)對“通法、通解”的理解,又要強調(diào)對所學知識的靈活運用。
2、設計算法時,經(jīng)常遇到解方程(組)的問題,一般是按照數(shù)學上解方程(組)的方法進行設計,但應注意全面考慮方程解的情況,即先確定方程(組)是否有解,有解時有幾個解,然后根據(jù)求解步驟設計算法步驟。
【變式訓練】
【解】算法如下:S1,①+2×②得5x=1;③
S2,解③得x=;
S3,②-①×2得5y=3;④
S4,解④得y=;
命題方向3篩選問題的算法設計
例3、設計一個算法,對任意3個整數(shù)a、b、c,求出其中的最小值、
[思路分析]比較a,b比較m與c―→最小數(shù)
[規(guī)范解答]算法步驟如下:
1、比較a與b的大小,若a
2、比較m與c的大小,若m
[規(guī)律總結]求最小(大)數(shù)就是從中篩選出最小(大)的一個,篩選過程中的每一步都是比較兩個數(shù)的大小,保證了篩選的可行性,這種方法可以推廣到從多個不同數(shù)中篩選出滿足要求的一個。
【變式訓練】在下列數(shù)字序列中,寫出搜索89的算法:
21,3,0,9,15,72,89,91,93
[解析]1、先找到序列中的第一個數(shù)m,m=21;
2、將m與89比較,是否相等,如果相等,則搜索到89;
3、如果m與89不相等,則往下執(zhí)行;
4、繼續(xù)將序列中的其他數(shù)賦給m,重復第2步,直到搜索到89。
命題方向4非數(shù)值性問題的算法
例4、一個人帶三只狼和三只羚羊過河,只有一條船,同船可以容一個人和兩只動物,沒有人在的時候,如果狼的數(shù)量不少于羚羊的數(shù)量,狼就會吃掉羚羊。
(1)設計安全渡河的算法;
(2)思考每一步算法所遵循的共同原則是什么?
高中數(shù)學教案 10
【教學目標】
1.知識與技能
(1)理解等差數(shù)列的定義,會應用定義判斷一個數(shù)列是否是等差數(shù)列:
(2)賬務等差數(shù)列的通項公式及其推導過程:
(3)會應用等差數(shù)列通項公式解決簡單問題。
2.過程與方法
在定義的理解和通項公式的推導、應用過程中,培養(yǎng)學生的觀察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。
3.情感、態(tài)度與價值觀
通過教師指導下學生的自主學習、相互交流和探索活動,培養(yǎng)學生主動探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學生的學習興趣,讓學生感受到成功的喜悅。在解決問題的過程中,使學生養(yǎng)成細心觀察、認真分析、善于總結的良好習慣。
【教學重點】
、俚炔顢(shù)列的概念;
、诘炔顢(shù)列的通項公式
【教學難點】
①理解等差數(shù)列“等差”的特點及通項公式的含義;
、诘炔顢(shù)列的通項公式的推導過程.
【學情分析】
我所教學的學生是我校高一(7)班的學生(平行班學生),經(jīng)過一年的高中數(shù)學學習,大部分學生知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學生的'基礎較弱,學習數(shù)學的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發(fā),注重引導、啟發(fā)、研究和探討以符合這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。
【設計思路】
1、教法
、賳l(fā)引導法:這種方法有利于學生對知識進行主動建構;有利于突出重點,突破難點;有利于調(diào)動學生的主動性和積極性,發(fā)揮其創(chuàng)造性.
、诜纸M討論法:有利于學生進行交流,及時發(fā)現(xiàn)問題,解決問題,調(diào)動學生的積極性.
③講練結合法:可以及時鞏固所學內(nèi)容,抓住重點,突破難點.
2、學法
引導學生首先從三個現(xiàn)實問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導出等差數(shù)列的通項公式;可以對各種能力的同學引導認識多元的推導思維方法.
【教學過程】
一、創(chuàng)設情境,引入新課
1、從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?
2、水庫管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數(shù)列?
3、我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個什么數(shù)列?
教師:以上三個問題中的數(shù)蘊涵著三列數(shù).
學生:
、0,5,10,15,20,25,….
②18,15.5,13,10.5,8,5.5.
、10072,10144,10216,10288,10360.
(設置意圖:從實例引入,實質(zhì)是給出了等差數(shù)列的現(xiàn)實背景,目的是讓學生感受到等差數(shù)列是現(xiàn)實生活中大量存在的數(shù)學模型.通過分析,由特殊到一般,激發(fā)學生學習探究知識的自主性,培養(yǎng)學生的歸納能力.
二、觀察歸納,形成定義
、0,5,10,15,20,25,….
、18,15.5,13,10.5,8,5.5.
、10072,10144,10216,10288,10360.
思考1上述數(shù)列有什么共同特點?
思考2根據(jù)上數(shù)列的共同特點,你能給出等差數(shù)列的一般定義嗎?
思考3你能將上述的文字語言轉換成數(shù)學符號語言嗎?
教師:引導學生思考這三列數(shù)具有的共同特征,然后讓學生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.
學生:分組討論,可能會有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.
教師引導歸納出:等差數(shù)列的定義;另外,教師引導學生從數(shù)學符號角度理解等差數(shù)列的定義.
(設計意圖:通過對一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學生體會到等差數(shù)列的規(guī)律和共同特點;一開始抓住:“從第二項起,每一項與它的前一項的差為同一常數(shù)”,落實對等差數(shù)列概念的準確表達.)
三、舉一反三,鞏固定義
1、判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教師出示題目,學生思考回答.教師訂正并強調(diào)求公差應注意的問題.
注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負數(shù),也可以為0.
(設計意圖:強化學生對等差數(shù)列“等差”特征的理解和應用).
2、思考4:設數(shù)列{an}的通項公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?
(設計意圖:強化等差數(shù)列的證明定義法)
四、利用定義,導出通項
1、已知等差數(shù)列:8,5,2,…,求第200項?
2、已知一個等差數(shù)列{an}的`首項是a1,公差是d,如何求出它的任意項an呢?
教師出示問題,放手讓學生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學生在課堂上的具體情況進行具體評價、引導,總結推導方法,體會歸納思想以及累加求通項的方法;讓學生初步嘗試處理數(shù)列問題的常用方法.
(設計意圖:引導學生觀察、歸納、猜想,培養(yǎng)學生合理的推理能力.學生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學生善于動腦、勇于創(chuàng)新的品質(zhì),激發(fā)學生的創(chuàng)造意識.鼓勵學生自主解答,培養(yǎng)學生運算能力)
五、應用通項,解決問題
1、判斷100是不是等差數(shù)列2,9,16,…的項?如果是,是第幾項?
2、在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.
3、求等差數(shù)列3,7,11,…的第4項和第10項
教師:給出問題,讓學生自己操練,教師巡視學生答題情況.
學生:教師叫學生代表總結此類題型的解題思路,教師補充:已知等差數(shù)列的首項和公差就可以求出其通項公式
(設計意圖:主要是熟悉公式,使學生從中體會公式與方程之間的聯(lián)系.初步認識“基本量法”求解等差數(shù)列問題.)
六、反饋練習:教材13頁練習1
七、歸納總結:
1、一個定義:
等差數(shù)列的定義及定義表達式
2、一個公式:
等差數(shù)列的通項公式
3、二個應用:
定義和通項公式的應用
教師:讓學生思考整理,找?guī)讉代表發(fā)言,最后教師給出補充
(設計意圖:引導學生去聯(lián)想本節(jié)課所涉及到的各個方面,溝通它們之間的聯(lián)系,使學生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念.)
【設計反思】
本設計從生活中的數(shù)列模型導入,有助于發(fā)揮學生學習的主動性,增強學生學習數(shù)列的興趣.在探索的過程中,學生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學生分析問題和解決問題的能力.本節(jié)課教學采用啟發(fā)方法,以教師提出問題、學生探討解決問題為途徑,以相互補充展開教學,總結科學合理的知識體系,形成師生之間的良性互動,提高課堂教學效率.
高中數(shù)學教案 11
教學目標:
1.進一步理解線性規(guī)劃的概念;會解簡單的線性規(guī)劃問題;
2.在運用建模和數(shù)形結合等數(shù)學思想方法分析、解決問題的過程中;提高解決問題的能力;
3.進一步提高學生的合作意識和探究意識。
教學重點:線性規(guī)劃的概念及其解法
教學難點:
代數(shù)問題幾何化的過程
教學方法:
啟發(fā)探究式
教學手段:
運用多媒體技術
教學過程:
1.實際問題引入。
問題一:小王和小李合租了一輛小轎車外出旅游.小王駕車平均速度為每小時70公里,平均耗油量為每小時6公升;小李駕車平均速度為每小時50公里,平均耗油量為每小時4公升.現(xiàn)知道油箱內(nèi)油量為60公升,兩人駕車時間累計不能超過12小時.問小王和小李分別駕車多少時間時,行駛路程最遠?
2.探究和討論下列問題。
(1)實際問題轉化為一個怎樣的數(shù)學問題?
(2)滿足不等式組①的條件的點構成的.區(qū)域如何表示?
(3)關于x、y的一個表達式z=70x+50y的幾何意義是什么?
(4)z的幾何意義是什么?
(5)z的最大值如何確定?
讓學生達成以下共識:小王駕車時間x和小李駕車時間y受到時間(12小時)和油量(60公升)的限制,即
x+y≤12
6x+4y≤60 ①
x≥0
y≥0
行駛路程可以表示成關于x、y的一個表達式:z=70x+50y 由數(shù)形結合可知:經(jīng)過點B(6,6)的直線所對應的z最大.
則zmax=6×70+6×50=720
結論:小王和小李分別駕車6小時時,行駛路程最遠為720公里.
解題反思:
問題解決過程中體現(xiàn)了那些重要的數(shù)學思想?
3.線性規(guī)劃的有關概念。
什么是“線性規(guī)劃問題”?涉及約束條件、線性約束條件、目標函數(shù)、線性目標函數(shù)、可行解、可行域和最優(yōu)解等概念.
4.進一步探究線性規(guī)劃問題的解。
問題二:若小王和小李駕車平均速度為每小時60公里和40公里,其它條件不變,問小王和小李分別駕車多少時間時,行駛路程最遠?
要求:請你寫出約束條件、目標函數(shù),作出可行域,求出最優(yōu)解。
問題三:如果把不等式組①中的兩個“≤”改為“≥”,是否存在最優(yōu)解?
5.小結。
(1)數(shù)學知識;(2)數(shù)學思想。
6.作業(yè)。
(1)閱讀教材:P.60-63;
(2)課后練習:教材P.65-2,3;
(3)在自己生活中尋找一個簡單的線性規(guī)劃問題,寫出約束條件,確定目標函數(shù),作出可行域,并求出最優(yōu)解。
高中數(shù)學教案 12
一、教學目標
1.知識與技能
。1)通過實物操作,增強學生的直觀感知。
。2)能根據(jù)幾何結構特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。
。4)會表示有關于幾何體以及柱、錐、臺的分類。
2.過程與方法
。1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。
。2)讓學生觀察、討論、歸納、概括所學的知識。
3.情感態(tài)度與價值觀
。1)使學生感受空間幾何體存在于現(xiàn)實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。
(2)培養(yǎng)學生的空間想象能力和抽象括能力。
二、教學重點、難點
重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。
難點:柱、錐、臺、球的結構特征的`概括。
三、教學用具
。1)學法:觀察、思考、交流、討論、概括。
。2)實物模型、投影儀
四、教學思路
。ㄒ唬﹦(chuàng)設情景,揭示課題
1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?引導學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。
2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結構特征的空間物體),你能通過觀察。根據(jù)某種標準對這些空間物體進行分類嗎?這是我們所要學習的內(nèi)容。
。ǘ、研探新知
1.引導學生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
2.觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點是什么?它們的共同特點是什么?
3.組織學生分組討論,每小組選出一名同學發(fā)表本組討論結果。在此基礎上得出棱柱的主要結構特征。
。1)有兩個面互相平行;
(2)其余各面都是平行四邊形;
。3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4.教師與學生結合圖形共同得出棱柱相關概念以及棱柱的表示。
5.提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?請列舉身邊具有已學過的幾何結構特征的物體,并說出組成這些物體的幾何結構特征?它們由哪些基本幾何體組成的?
6.以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。
7.讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關的概念及圓柱的表示。
8.引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。
9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
10.現(xiàn)實世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結構特征的物體組合而成。請列舉身邊具有已學過的幾何結構特征的物體,并說出組成這些物體的幾何結構特征?它們由哪些基本幾何體組成的?
(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學生思考。
1.有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)
2.棱柱的何兩個平面都可以作為棱柱的底面嗎?
3.課本P8,習題1.1A組第1題。
4.圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?
5.棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?
高中數(shù)學教案 13
教材分析:
三角函數(shù)的誘導公式是普通高中課程標準實驗教科書(人教B版)數(shù)學必修四,第一章第二節(jié)內(nèi)容,其主要內(nèi)容是公式(一)至公式(四)。本節(jié)課是第二課時,教學內(nèi)容是公式(三)。教材要求通過學生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎上,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)三角函數(shù)值的關系。同時教材滲透了轉化與化歸等數(shù)學思想方法。
教案背景:
通過學生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎上,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)三角函數(shù)值的關系。同時教材滲透了轉化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求。因此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
教學方法:
以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結合等數(shù)學思想方法,采用提出問題、啟發(fā)引導、共同探究、綜合應用等教學模式。
教學目標:
借助單位圓探究誘導公式。
能正確運用誘導公式將任意角的三角函數(shù)化為銳角三角函數(shù)。
教學重點:
誘導公式(三)的推導及應用。
教學難點:
誘導公式的應用。
教學手段:
多媒體。
教學情景設計:
一.復習回顧:
1. 誘導公式(一)(二)。
2. 角 (終邊在一條直線上)
3. 思考:下列一組角有什么特征?( )能否用式子來表示?
二.新課:
已知 由
可知
而 (課件演示,學生發(fā)現(xiàn))
所以
于是可得: (三)
設計意圖:結合幾何畫板的演示利用同一點的坐標變換,導出公式。
由公式(一)(三)可以看出,角 角 相等。即:
.
公式(一)(二)(三)都叫誘導公式。利用誘導公式可以求三角函數(shù)式的值或化簡三角函數(shù)式。
設計意圖:結合學過的公式(一)(二),發(fā)現(xiàn)特點,總結公式。
1. 練習
(1)
設計意圖:利用公式解決問題,發(fā)現(xiàn)新問題,小組研究討論,得到新公式。
(學生板演,老師點評,用彩色粉筆強調(diào)重點,引導學生總結公式。)
三.例題
例3:求下列各三角函數(shù)值:
(1)
(2)
(3)
(4)
例4:化簡
設計意圖:利用公式解決問題。
練習:
(1)
(2) (學生板演,師生點評)
設計意圖:觀察公式特點,選擇公式解決問題。
四.課堂小結:將任意角三角函數(shù)轉化為銳角三角函數(shù),體現(xiàn)轉化化歸,數(shù)形結合思想的應用,培養(yǎng)了學生分析問題、解決問題的能力,熟練應用解決問題。
五.課后作業(yè):課后練習A、B組
六.課后反思與交流
很榮幸大家來聽我的課,通過這課,我學習到如下的東西:
1.要認真的研讀新課標,對教學的'目標,重難點把握要到位
2.注意板書設計,注重細節(jié)的東西,語速需要改正
3.進一步的學習網(wǎng)頁制作,讓你的網(wǎng)頁更加的完善,學生更容易操作
4.盡可能讓你的學生自主提出問題,自主的思考,能夠化被動學習為主動學習,充分享受學習數(shù)學的樂趣
5.上課的生動化,形象化需要加強
聽課者評價:
1.評議者:網(wǎng)絡輔助教學,起到了很好的效果;教態(tài)大方,作為新教師,開設校際課,勇氣可嘉!建議:感覺到老師有點緊張,其實可以放開點的,相信效果會更好的!重點不夠清晰,有引導數(shù)學時,最好值有個側重點;網(wǎng)絡設計上,網(wǎng)頁上公開的推導公式為上,留有更大的空間讓學生來思考。
2.評議者:網(wǎng)絡教學效果良好,給學生自主思考,學習的空間發(fā)揮,教學設計得好;建議:課堂講課聲音,語調(diào)可以更有節(jié)奏感一些,抑揚頓挫應注意課堂例題練習可以多兩題。
3.評議者:學科網(wǎng)絡平臺的使用;建議:應重視引導學生將一些唾手可得的有用結論總結出來,并形成自我的經(jīng)驗。
4.評議者:引導學生通過網(wǎng)絡進行探究。
建議:課件制作在線測評部分,建議不能重復選擇,應全部做完后,顯示結果,再重復測試;多提問學生。
( 1)給學生思考的時間較長,語調(diào)相對平緩,總結時,給學生一些激勵的語言更好
( 2)這樣子的教學可以提高上課效率,讓學生更多的時間思考
( 3)網(wǎng)絡平臺的使用,使得學生的參與度明顯提高,存在問題:1.公式對稱性的誘導,點與點的對稱的誘導,終邊的關系的誘導,要進一步的修正;2.公式的概括要注意引導學生怎么用,學習這個誘導公式的作用
( 4)給學生答案,這個網(wǎng)頁要進一步的修正,答案能否不要一點就出來
( 5)1.板書設計要進一步的加強,2.語速相對是比較快的3.練習量比較少
( 6)讓學生多探究,課堂會更熱鬧
( 7)注意引入的過程要帶有目的,帶著問題來教學,學生帶著問題來學習
( 8)教學模式相對簡單重復
( 9)思路較為清晰,規(guī)范化的推理
高中數(shù)學教案 14
教學要求:
理解曲線交點與方程組的解的關系,掌握直線與曲線位置關系的討論,能熟練地求曲線交點。
教學重點:
熟練地求交點。
教學過程:
一、復習準備:
1、直線A x+B+C=0與直線A x+B+C=0,平行的充要條件是xx,相交的充要條件是xx;
重合的充要條件是xx,垂直的充要條件是xx。
2、知識回顧:充分條件、必要條件、充要條件。
二、講授新課:
1、教學例題:
、俪鍪纠呵笾本=x+1截曲線=x所得線段的中點坐標。
、谟蓪W生分析求解的`思路→學生練→老師評講
(聯(lián)立方程組→消用韋達定理求x坐標→用直線方程求坐標)
、墼嚽蟆喺〗Y思路!冾}:求弦長
④出示例:當b為何值時,直線=x+b與曲線x+=4分別相交?相切?相離?
⑤分析:三種位置關系與兩曲線的交點情況有何關系?
⑥學生試求→訂正→小結思路。
、哂懻撈渌夥?
解一:用圓心到直線的距離求解;
解二:用數(shù)形結合法進行分析。
⑧討論:兩條曲線F(x,)=0與F(x,)=0相交的充要條件是什么?
如何判別直線Ax+B+C=0與曲線F(x,)=0的位置關系?
。(lián)立方程組后,一解時:相切或相交;二解時:相交;無解時:相離)
2、練習:
求過點(—2,—)且與拋物線=x相切的直線方程。
三、鞏固練習:
1、若兩直線x+=3a,x-=a的交點在圓x+=5上,求a的值。
。ù鸢福篴=±1)
2、求直線=2x+3被曲線=x截得的線段長。
3、課堂作業(yè):書P72 3、4、10題。
高中數(shù)學教案 15
教學目標:
1、使學生了解角的形成,理解角的概念掌握角的各種表示法;
2、通過觀察、操作培養(yǎng)學生的觀察能力和動手操作能力。
3、使學生掌握度、分、秒的進位制,會作度、分、秒間的單位互化
4、采用自學與小組合作學習相結合的方法,培養(yǎng)學生主動參與、勇于探究的精神。
教學重點:
理解角的概念,掌握角的三種表示方法
教學難點:
掌握度、分、秒的進位制, ,會作度、分、秒間的單位互化
教學手段:
教具:電腦課件、實物投影、量角器
學具:量角器需測量的角
教學過程:
一、建立角的概念
。ㄒ唬┮虢牵ɡ谜n件演示)
1、從生活中引入
提問:
A、以前我們曾經(jīng)認識過角,那你們能從這兩個圖形中指出哪些地方是角嗎?
B、在我們的生活當中存在著許許多多的角。一起看一看。誰能從這些常用的物品中找出角?
2、從射線引入
提問:
A、昨天我們認識了射線,想從一點可以引出多少條射線?
B、如果從一點出發(fā)任意取兩條射線,那出現(xiàn)的是什么圖形?
C、哪兩條射線可以組成一個角?誰來指一指。
。ǘ┱J識角,總結角的定義
3、 過渡:角是怎么形成的呢?一起看
。1)、演示:老師在這畫上一個點,現(xiàn)在從這點出發(fā)引出一條射線,再從這點出發(fā)引出第二條射線。
提問:觀察從這點引出了幾條射線?此時所組成的圖形是什么圖形?
。2)、判斷下列哪些圖形是角。
。ā蹋 (×) (√) (×) (√)
為何第二幅和第四幅圖形不是角?(學生回答)
誰能用自己的話來概括一下怎樣組成的圖形叫做角?
總結:有公共端點的兩條射線所組成的圖形叫做角(angle)
角的第二定義:角也可以看做由一條射線繞端點旋轉所形成的圖形.如下圖中的角,可以看做射線OA繞端點0按逆時針方向旋轉到OB所形成的我們把OA叫做角的始邊,OB叫做角的終邊.
B
0 A
4、認識角的各部分名稱,明確頂點、邊的作用
(1)觀看角的圖形提問:這個點叫什么?這兩條射線叫什么?(學生邊說師邊標名稱)
。2)角可以畫在本上、黑板上,那角的位置是由誰決定的?
。3)頂點可以確定角的位置,從頂點引出的兩條邊可以組成一個角。
5、學會用符號表示角
提問:那么,角的符號是什么?該怎么寫,怎么讀的呢?(電腦顯示)
(1)可以標上三個大寫字母,寫作:∠ABC或∠CBA,讀作:角ABC或角CBA.
。2)觀察這兩種方法,有什么特點?(字母B都在中間)
(3)所以,在只有一個角的時候,我們還可以寫作: ∠B,讀作:角B
。4)為了方便,有時我們還可以標上數(shù)字,寫作∠1,讀作:角1
。5)注:區(qū)別 “∠”和“<”的不同。請同學們指著用學具折出的一個角,訓練一下這三種讀法。
6、強調(diào)角的大小與兩邊張開的程度有關,與兩條邊的長短無關。
二、 角的度量
1、學習角的度量
。1)教學生認識量角器
(2) 認識了量角器,那怎樣使用它去測量角的.度數(shù)呢?這部分知識請同學們合作學習。
提出要求:小組合作邊學習測量方法邊嘗試測量
第一個角,想想有幾種方法?
1、要求合作學習探究、測量。
2、反饋匯報:學生邊演示邊復述過程
3、教師利用課件演示正確的操作過程,糾正學生中存在的問題。
4、歸納概括測量方法(兩重合一對)
。1)用量角器的中心點與角的頂點重合
。2)零刻度線與角的一邊重合(可與內(nèi)零度刻度線重合;也可與外零度刻度線重合)
。3)另一條邊所對的角的度數(shù),就是這個角的度數(shù)。
5、小結:同一個角無論是用內(nèi)刻度量角,還是用外刻度量角,結果都一樣。
6、獨立練習測量角的度數(shù)(書做一做中第一題1,3與第二題)
。1) 獨立測量,師注意查看學生中存在的問題。
(2) 課件演示糾正問題
三、度、分、秒的進位制及這些單位間的互化
為了更精細地度量角,我們引入更小的角度單位:分、秒.把1°的角等分成60份,每份叫做1分記作1′;把1′的角再等分成60份,每份叫做1秒的角,1秒記作1″.
1°=60′,1′=60″;
1′=( )°,1″=( )′.
例1 將57.32°用度、分、秒表示.
解:先把0.32°化為分,
0.32°=60′×0.32=19.2′.
再把0.2′化為秒,
0.2′=60″×0.2=12″.
所以 57.32″=57°19′12″.
例2 把10°6′36″用度表示.
解:先把36″化為分,
36″=( )′×36=0.6′
6′+0.6′=6.6′.
再把6.6′化為度,
6.6′=( )°×6.6=0.11°.
所以 10°6′36″=10.11°.
四、鞏固練習
課本P122練習
五、總結:請大家回憶一下,今天都學了那些知識,通過學習你想說些什么?
六、作業(yè):課本P123 3、4.(1)(3)、5.(2)(4)
高中數(shù)學教案 16
一、預習目標
預習《平面向量應用舉例》,體會向量是一種處理幾何問題、物理問題等的工具,建立實際問題與向量的聯(lián)系。
二、預習內(nèi)容
閱讀課本內(nèi)容,整理例題,結合向量的運算,解決實際的幾何問題、物理問題。另外,在思考一下幾個問題:
1、例1如果不用向量的方法,還有其他證明方法嗎?
2、利用向量方法解決平面幾何問題的“三步曲”是什么?
3、例3中,
、艦楹沃禃r,|F1|最小,最小值是多少?
、苵F1|能等于|G|嗎?為什么?
三、提出疑惑
同學們,通過你的自主學習,你還有哪些疑惑,請把它填在下面的表格中疑惑點疑惑內(nèi)容。
課內(nèi)探究學案
一、學習內(nèi)容
1、運用向量的有關知識(向量加減法與向量數(shù)量積的.運算法則等)解決平面幾何和解析幾何中直線或線段的平行、垂直、相等、夾角和距離等問題。
2、運用向量的有關知識解決簡單的物理問題。
二、學習過程
探究一:
(1)向量運算與幾何中的結論"若,則,且所在直線平行或重合"相類比,你有什么體會?
。2)舉出幾個具有線性運算的幾何實例。
例1、證明:平行四邊形兩條對角線的平方和等于四條邊的平方和。
已知:平行四邊形ABCD。
求證:
試用幾何方法解決這個問題,利用向量的方法解決平面幾何問題的“三步曲”?
。1)建立平面幾何與向量的聯(lián)系,
。2)通過向量運算,研究幾何元素之間的關系,
。3)把運算結果“翻譯”成幾何關系。
例2,如圖,平行四邊形ABCD中,點E、F分別是AD、DC邊的中點,BE、BF分別與AC交于R、T兩點,你能發(fā)現(xiàn)AR、RT、TC之間的關系嗎?
探究二:兩個人提一個旅行包,夾角越大越費力。在單杠上做引體向上運動,兩臂夾角越小越省力。這些力的問題是怎么回事?
例3,在日常生活中,你是否有這樣的經(jīng)驗:兩個人共提一個旅行包,夾角越大越費力;在單杠上作引體向上運動,兩臂的夾角越小越省力。你能從數(shù)學的角度解釋這種現(xiàn)象嗎?
請同學們結合剛才這個問題,思考下面的問題:
、艦楹沃禃r,|F1|最小,最小值是多少?
、苵F1|能等于|G|嗎?為什么?
例4如圖,一條河的兩岸平行,河的寬度m,一艘船從A處出發(fā)到河對岸。已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,問行駛航程最短時,所用的時間是多少(精確到0。1min)?
變式訓練:兩個粒子A、B從同一源發(fā)射出來,在某一時刻,它們的位移分別為,
。1)寫出此時粒子B相對粒子A的位移s;
。2)計算s在方向上的投影。
三、反思總結
結合圖形特點,選定正交基底,用坐標表示向量進行運算解決幾何問題,體現(xiàn)幾何問題。
代數(shù)化的特點,數(shù)形結合的數(shù)學思想體現(xiàn)的淋漓盡致。向量作為橋梁工具使得運算簡練標致,又體現(xiàn)了數(shù)學的美。有關長方形、正方形、直角三角形等平行、垂直等問題常用此法。
本節(jié)主要研究了用向量知識解決平面幾何問題和物理問題;掌握向量法和坐標法,以及用向量解決實際問題的步驟。
【高中數(shù)學教案】相關文章:
高中數(shù)學教案05-05
高中數(shù)學教案11-01
高中數(shù)學教案12-19
高中數(shù)學教案模板11-07
高中數(shù)學教案優(yōu)秀11-05
【精】高中數(shù)學教案06-22
高中數(shù)學教案【精】06-17
【薦】高中數(shù)學教案07-05
【熱】高中數(shù)學教案10-27
高中數(shù)學教案【薦】07-10