在线视频国产欧美另类,偷拍亚洲一区一区二区三区,日韩中文字幕在线视频,日本精品久久久久中文字幕

<small id="qpqhz"></small>
  • <legend id="qpqhz"></legend>

      <td id="qpqhz"><strong id="qpqhz"></strong></td>
      <small id="qpqhz"><menuitem id="qpqhz"></menuitem></small>
    1. 二次函數(shù)的圖象教案

      時(shí)間:2021-06-14 12:05:51 教案 我要投稿

      二次函數(shù)的圖象教案

        2.4二次函數(shù)=ax2+bx+c的圖象

      二次函數(shù)的圖象教案

        本節(jié)課在二次函數(shù)=ax2和=ax2+c的圖象的基礎(chǔ)上,進(jìn)一步研究=a(x-h)2和=a(x-h)2+的圖象,并探索它們之間的關(guān)系和各自的性質(zhì).旨在全面掌握所有二次函數(shù)的圖象和性質(zhì)的變化情況.同時(shí)對(duì)二次函數(shù)的研究,經(jīng)歷了從簡(jiǎn)單到復(fù)雜,從特殊到一般的過(guò)程:先是從=x2開(kāi)始,然后是=ax2,=ax2+c,最后是=a(x-h)2,=a(x-h)2+,=ax2+bx+c.符合學(xué)生的認(rèn)知特點(diǎn),體會(huì)建立二次函數(shù)對(duì)稱軸和頂點(diǎn)坐標(biāo)公式的必要性.

        在教學(xué)中,主要是讓學(xué)生自己動(dòng)手畫圖象,通過(guò)自己的觀察、交流、對(duì)比、概括和反思[

        等探索活動(dòng),使學(xué)生達(dá)到對(duì)拋物線自身特點(diǎn)的認(rèn)識(shí)和對(duì)二次函數(shù)性質(zhì)的理解.并能利用它的性質(zhì)解決問(wèn)題.

        2.4二次函數(shù)=ax2+bx+c的圖象(一)

        教學(xué)目標(biāo)

        (一)教學(xué)知識(shí)點(diǎn)[

        1.能夠作出函數(shù)=a(x-h)2和=a(x-h)2+的圖象,并能理解它與=ax2的圖象的關(guān)系.理解a,h,對(duì)二次函數(shù)圖象的影響.

        2.能夠正確說(shuō)出=a(x-h)2+圖象的開(kāi)口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo).

        (二)能力訓(xùn)練要求

        1.通過(guò)學(xué)生自己的探索活動(dòng),對(duì)二次函數(shù)性質(zhì)的研究,達(dá)到對(duì)拋物線自身特點(diǎn)的認(rèn)識(shí)和對(duì)二次函數(shù)性質(zhì)的理解.

        2.經(jīng)歷探索二次函數(shù)的圖象的作法和性質(zhì)的過(guò)程,培養(yǎng)學(xué)生的探索能力.

        (三)情感與價(jià)值觀要求

        1.經(jīng)歷觀察、猜想、總結(jié)等數(shù)學(xué)活動(dòng)過(guò)程,發(fā)展合情推理能力和初步的演繹推理能力,能有條理地、清晰地闡述自己的觀點(diǎn).

        2.讓學(xué)生學(xué)會(huì)與人合作,并能與他人交流思維的過(guò)程和結(jié)果.

        教學(xué)重點(diǎn)[:Wz5u.c]

        1.經(jīng)歷探索二次函數(shù)=ax2+bx+c的圖象的作法和性質(zhì)的過(guò)程.

        2.能夠作出=a(x-h)2和=a(x-h)2+的圖象,并能理解它與=ax2的圖象的關(guān)系,理解a、h、對(duì)二次函數(shù)圖象的影響.

        3.能夠正確說(shuō)出=a(x-h)2+圖象的開(kāi)口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo).

        教學(xué)難點(diǎn)

        能夠作出=a(x-h)2和=a(x-h)2+的圖象,并能夠理解它與=ax2的圖象的關(guān)系,理解a、h、對(duì)二次函數(shù)圖象的影響.

        教學(xué)方法

        探索——比較——總結(jié)法.

        教具準(zhǔn)備

        投影片四張

        第一張:(記作2.4.1 A)

        第二張:(記作2.4.1 B)

        第三張:(記作2.4.1 C)

        第四張:(記作2.4.1 D)

        教學(xué)過(guò)程

       、瘢畡(chuàng)設(shè)問(wèn)題情境、引入新課

        [師]我們已學(xué)習(xí)過(guò)兩種類型的二次函數(shù),即=ax2與=ax2+c,知道它們都是軸對(duì)稱圖形,對(duì)稱軸都是軸,有最大值或最小值.頂點(diǎn)都是原點(diǎn).還知道=ax2+c的圖象是函數(shù)=ax2的圖象經(jīng)過(guò)上下移動(dòng)得到的,那么=ax2的圖象能否左右移動(dòng)呢?它左右移動(dòng)后又會(huì)得到什么樣的函數(shù)形式,它又有哪些性質(zhì)呢?本節(jié)課我們就來(lái)研究有關(guān)問(wèn)題.

       、颍抡n講解

        一、比較函數(shù)=3x2與=3(X-1)2的圖象的性質(zhì).

        投影片:(2.4 A)

        (1)完成下表,并比較3x2和3(x-1)2的值,

        它們之間有什么關(guān)系?

        X-3-2-101234

        3x2

        3(x-1)2

        (2)在下圖中作出二次函數(shù)=3(x-1)2的圖象.你是怎樣作的?

        (3)函數(shù)=3(x-1)2的圖象與=3x2的圖象有什么關(guān)系?它是軸對(duì)稱圖形嗎?它的'對(duì)稱軸和頂點(diǎn)坐標(biāo)分別是什么?

        (4)x取哪些值時(shí),函數(shù)=3(x-1)2的值隨x值的增大而增大?x取哪些值時(shí),函數(shù)=3(x-1)2的值隨x值的增大而減小?

        [師]請(qǐng)大家先自己填表,畫圖象,思考每一個(gè)問(wèn)題,然后互相討論,總結(jié).

        [生](1)第二行從左到右依次填:27.12,3,0,3, 12,27,48;第三行從左到右依次填48,27,12,3,0,3, 12,27.

        (2)用描點(diǎn)法作出=3(x-1)2的圖象,如上圖.

        (3)二次函數(shù))=3(x-1)2的圖象與=3x2的圖象形狀相同,開(kāi)口方向也相同,但對(duì)稱軸和頂點(diǎn)坐標(biāo)不同,=3(x-1)2的圖象的對(duì)稱軸是直線x=1,頂點(diǎn)坐標(biāo)是(1,0).

        (4)當(dāng)x>1時(shí),函數(shù)=3(x-1)2的值隨x值的增大而增大,x<1時(shí),=3(x-1)2的值隨x值的增大而減小.

        [師]能否用移動(dòng)的觀點(diǎn)說(shuō)明函數(shù)=3x2與=3(x-1)2的圖象之間的關(guān)系呢?

        [生]=3(x-1)2的圖象可以看成是函數(shù))=3x2的圖象整體向右平移得到的.

        [師]能像上節(jié)課那樣比較它們圖象的性質(zhì)嗎?

        [生]相同點(diǎn):

        a.圖象都中拋物線,且形狀相同,開(kāi)口方向相同.

        b. 都是軸對(duì)稱圖形.

        c.都有最小值,最小值都為0.

        d.在對(duì)稱軸左側(cè),都隨x的增大而減。趯(duì)稱軸右側(cè),都隨x的增大而增大.

        不同點(diǎn):

        a.對(duì)稱軸不同,=3x2的對(duì)稱軸是軸=3(x-1)2的對(duì)稱軸是x=1.

        b. 它們的位置不問(wèn).[:Wz5u.c]

        c. 它們的頂點(diǎn)坐標(biāo)不同. =3x2的頂點(diǎn)坐標(biāo)為(0,0),=3(x-1)2的頂點(diǎn)坐標(biāo)為(1,0),

        聯(lián)系:

        把函數(shù)=3x2的圖象向右移動(dòng)一個(gè)單位,則得到函數(shù)=3(x-1)2的圖像.

        二、做一做

        投影片:(2.4.1 B)

        在同一直角坐標(biāo)系中作出函數(shù)=3(x-1)2和=3(x-1)2+2的圖象.并比較它們圖象的性質(zhì).

        [生]圖象如下

        它們的圖象的性質(zhì)比較如下:

        相同點(diǎn):

        a.圖象都是拋物線,且形狀相同,開(kāi)口方向相同.

        b. 都足軸對(duì)稱圖形,對(duì)稱軸都為x=1.

        c. 在對(duì)稱軸左側(cè),都隨x的增大而減小,在對(duì)稱軸右側(cè),都隨x的增大而增大.

        不同點(diǎn):

        a.它們的頂點(diǎn)不同,最值也不同.=3(x-1)2的頂點(diǎn)坐標(biāo)為(1.0),最小值為0.=3(x-1)2+2的頂點(diǎn)坐標(biāo)為(1,2),最小值為2.

        b. 它們的位置不同.

        聯(lián)系:

        把函數(shù)=3(x-1)2的圖象向上平移2個(gè)單位,就得到了函數(shù)=3(x-1)2+2的圖象.

        三、總結(jié)函數(shù)=3x2,=3(x-1)2,=3(x-1)2+2的圖象之間的關(guān)系.

        [師]通過(guò)上畫的討論,大家能夠總結(jié)出這三種函數(shù)圖象之間的關(guān)系嗎?

        [生]可以.

        二次函數(shù)=3x2,=3(x-1)2,=3(x-1)2+2的圖象都是拋物線.并且形狀相同,開(kāi)口方向相同,只是位置不同,頂點(diǎn)不同,對(duì)稱軸不同,將函數(shù)=3x2的圖象向右平移1個(gè)單位,就得到函數(shù)=3(x-1)2的圖象;再向上平移2個(gè)單位,就得到函數(shù)=3(x-1)2+2的圖象.

        [師]大家還記得=3x2與=3x2-1的圖象之間的關(guān)系嗎?

        [生]記得,把函數(shù)=3x2向下平移1個(gè)平位,就得到函數(shù)=3x2-1的圖象.

        [師]你能系統(tǒng)總結(jié)一下嗎?

        [生]將函數(shù)=3x2的圖象向下移動(dòng)1個(gè)單位,就得到了函數(shù)=3x2-1的圖象,向上移動(dòng)1個(gè)單位,就得到函數(shù)=3x2+1的圖象;將=3x2的圖象向右平移動(dòng)1個(gè)單位,就得到函數(shù)=3(x-1)2的圖象:向左移動(dòng)1個(gè)單位,就得到函數(shù)=3(x+1)2的圖象;由函數(shù)=3x2向右平移1個(gè)單位、再向上平移2個(gè)單位,就得到函數(shù)=3(x-1)2+2的圖象.

        [師]下面我們就一般形式來(lái)進(jìn)行總結(jié).

        投影片:(2.4.1 C)

        一般地,平移二次函數(shù)=ax2的圖象便可得到二次函數(shù)為=ax2+c,=a(x-h)2,=a(x-h)2+的圖象.

        (1)將=ax2的圖象上下移動(dòng)便可得到函數(shù)=ax2+c的圖象,當(dāng)c>0時(shí),向上移動(dòng),當(dāng)c<0時(shí),向下移動(dòng).

        (2)將函數(shù)=ax2的圖象左右移動(dòng)便可得到函數(shù)=a(x-h)2的圖象,當(dāng)h>0時(shí),向右移動(dòng),當(dāng)h<0時(shí),向左移動(dòng).

        (3)將函數(shù)=ax2的圖象既上下移,又左右移,便可得到函數(shù)=a(x-h)+的圖象.

        因此,這些函數(shù)的圖象都是一條拋物線,它們的開(kāi)口方向,對(duì)稱軸和頂點(diǎn)坐標(biāo)與a,h,的值有關(guān).

        下面大家經(jīng)過(guò)討論之后,填寫下表:

        =a(x-h)2+開(kāi)口方向?qū)ΨQ軸頂點(diǎn)坐標(biāo)

        a>0

        a<0

        四、議一議

        投影片:(2,4.1 D)

        (1)二次函數(shù)=3(x+1)2的圖象與二次函數(shù)=3x2的圖象有什么關(guān)系?它是軸對(duì)稱圖形嗎?它的對(duì)稱軸和頂點(diǎn)坐標(biāo)分別是什么?

        (2)二次函數(shù)=-3(x-2)2+4的圖象與二次函數(shù)=-3x2的圖象有什么關(guān)系?它是軸對(duì)稱圖形嗎?它的對(duì)稱軸和頂點(diǎn)坐標(biāo)分別是什么?

        (3)對(duì)于二次函數(shù)=3(x+1)2,當(dāng)x取哪些值時(shí),的值隨x值的增大而增大?當(dāng)x取哪些值時(shí),的值隨x值的增大而減小?二次函數(shù)=3(x+1)2+4呢?

        [師]在不畫圖象的情況下,你能回答上面的問(wèn)題嗎?

        [生](1)二次函數(shù)=3(x+1)2的圖象與=3x2的圖象形狀相同,開(kāi)口方向也相同,但對(duì)稱軸和頂點(diǎn)坐標(biāo)不同,=3(x+1)2的圖象的對(duì)稱軸是直線x=-1,頂點(diǎn)坐標(biāo)是(-1,0).只要將=3x2的圖象向左平移1個(gè)單位,就可以得到=3(x+1)2的圖象.

        (2)二次函數(shù)=-3(x-2)2+4的圖象與=-3x2的圖象形狀相同,只是位置不同,將函數(shù)=-3x2的圖象向右平移2個(gè)單位,就得到=-3(x-2)2的圖象,再向上平移4個(gè)單位,就得到=-3(x-2)2+4的圖象=-3(x-2)2+4的圖象的對(duì)稱軸是直線x=2,頂點(diǎn)坐標(biāo)是(2,4).

        (3)對(duì)于二次函數(shù)=3(x+1)2和=3(x+1)2+4,它們的對(duì)稱軸都是x=-1,當(dāng)x<-1時(shí),的值隨x值的增大而減。划(dāng)x>-1時(shí),的值隨x值的增大而增大.

       、螅n堂練習(xí)

        隨堂練習(xí)

       、簦n時(shí)小結(jié)

        本節(jié)課進(jìn)一步探究了函數(shù)=3x2與=3(x-1)2,=3(x-1)2+2的圖象有什么關(guān)系,對(duì)稱軸和頂點(diǎn)坐標(biāo)分別是什么這些問(wèn)題.并作了歸納總結(jié).還能利用這個(gè)結(jié)果對(duì)其他的函數(shù)圖象進(jìn)行討論.

       、酰n后作業(yè)

        習(xí)題2.4

       、觯顒(dòng)與探究

        二次函數(shù)= (x+2)2-1與= (x-1)2+2的圖象是由函數(shù)= x2的圖象怎樣移動(dòng)得到的?它們之間是通過(guò)怎樣移動(dòng)得到的?

        解:= (x+2)2-1的圖象是由= x2的圖象向左平移2個(gè)單位,再向下平移1個(gè)單位得到的,= (x-1)2+2的圖象是由= x2的圖象向右平移1個(gè)單位,再向上平移2個(gè)單位得到的.

       。 (x+2)2-1的圖象向右平移3個(gè)單位,再向上平移3個(gè)單位得到= (x-1)2+2的圖象.

       。 (x-1)2+2的圖象向左平移3個(gè)單位,再向下平移3個(gè)單位得到= (x+2)2-1的圖象.

        板書設(shè)計(jì)

        4.2.1 二次函數(shù)=ax2+bx+c的圖象(一) 一、1. 比較函數(shù)=3x2與=3(x-1)2的

        圖象和性質(zhì)(投影片2.4.1 A)

        2.做一做(投影片2.4.1 B)

        3.總結(jié)函數(shù)=3x2,=3(x-1)2= 3(x-1)2+2的圖象之間的關(guān)系(投影片2.4.1 C)

        4.議一議(投影片2.4.1 D)

        二、課堂練習(xí)

        1.隨堂練習(xí)

        2.補(bǔ)充練習(xí)

        三、課時(shí)小結(jié)

        四、課后作業(yè)

        備課資料

        參考練習(xí)

        在同一直角坐標(biāo)系內(nèi)作出函數(shù)=- x2,=- x2-1,=- (x+1)2-1的圖象,并討論它們的性質(zhì)與位置關(guān)系.

        解:圖象略

        它們都是拋物線,且開(kāi)口方向都向下;對(duì)稱軸分別為軸軸,直線x=-1;頂點(diǎn)坐標(biāo)分別為(0,0),(0,-1),(-1,-1).

        =- x2的圖象向下移動(dòng)1個(gè)單位得到=- x2-1 的圖象;=- x2的圖象向左移動(dòng)1個(gè)單位,向下移動(dòng)1個(gè)單位,得到=- (x+1)2-1的圖象.

      【二次函數(shù)的圖象教案】相關(guān)文章:

      《函數(shù)的圖象》教案08-26

      二次函數(shù)圖象的教學(xué)反思07-17

      二次函數(shù)圖象教學(xué)反思01-03

      函數(shù)的圖象的教案參考07-18

      二次函數(shù)的圖象教學(xué)計(jì)劃03-07

      函數(shù)的圖象數(shù)學(xué)教案12-13

      函數(shù)的圖象數(shù)學(xué)教案10-11

      數(shù)學(xué)教案-函數(shù)的圖象12-13

      《二次函數(shù)的圖象和性質(zhì)》教學(xué)設(shè)計(jì)05-17