在线视频国产欧美另类,偷拍亚洲一区一区二区三区,日韩中文字幕在线视频,日本精品久久久久中文字幕

<small id="qpqhz"></small>
  • <legend id="qpqhz"></legend>

      <td id="qpqhz"><strong id="qpqhz"></strong></td>
      <small id="qpqhz"><menuitem id="qpqhz"></menuitem></small>
    1. 實(shí)用文檔> 映射的概念教案

      映射的概念教案

      時(shí)間:2024-08-30 04:45:18

      映射的概念教案

      映射的概念教案

       映射的概念教案

        目標(biāo):

        1.知識(shí)與技能

        了解映射的概念,掌握象、原象等概念及其簡(jiǎn)單應(yīng)用。

        2.過(guò)程與方法

        學(xué)會(huì)用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的作用。

        3.情感、態(tài)度與價(jià)值觀

        樹(shù)立數(shù)學(xué)應(yīng)用的觀點(diǎn),培養(yǎng)學(xué)習(xí)良好的思維品質(zhì)。

        重點(diǎn):映射的概念。

        教學(xué)難點(diǎn):映射的概念。

        教學(xué)過(guò)程:

        一、復(fù)習(xí)引入:

        1、在初中我們已學(xué)過(guò)一些對(duì)應(yīng)的例子:(學(xué)生思考、討論、回答)

       、倏措娪皶r(shí),電影票與座位之間存在者一一對(duì)應(yīng)的關(guān)系

       、趯(duì)任意實(shí)數(shù)a,數(shù)軸上都有唯一的一點(diǎn)A與此相對(duì)應(yīng)

       、圩鴺(biāo)平面內(nèi)任意一點(diǎn)A 都有唯一的有序數(shù)對(duì)(x, y)和它對(duì)應(yīng)

        2、函數(shù)的概念

        本節(jié)我們將學(xué)習(xí)一種特殊的對(duì)應(yīng)—映射。

        二、講解新課:

        看下面的例子:設(shè)A,B分別是兩個(gè)集合,為簡(jiǎn)明起見(jiàn),設(shè)A,B分別是兩個(gè)有限集

        說(shuō)明:(2)(3)(4)這三個(gè)對(duì)應(yīng)的共同特點(diǎn)是:對(duì)于左邊集合A中的任何一個(gè)元素,在右邊集合B中都有唯一的元素和它對(duì)應(yīng)

        映射:設(shè)A,B是兩個(gè)集合,如果按照某種對(duì)應(yīng)法則f,對(duì)于集合A中的任何一個(gè)元素,在集合B中都有唯一的元素和它對(duì)應(yīng),這樣的對(duì)應(yīng)(包括集合A、B以及A到B的對(duì)應(yīng)法則f)叫做集合A到集合B的映射 記作:

        象、原象:給定一個(gè)集合A到集合B的映射,且 ,如果元素 和元素 對(duì)應(yīng),則元素 叫做元素 的象,元素 叫做元素 的原象

        關(guān)鍵字詞:(學(xué)生思考、討論、回答,教師整理、強(qiáng)調(diào))

        ①“A到B”:映射是有方向的,A到B的映射與B到A的映射往往不是同一個(gè)映射,A到B是求平方,B到A則是開(kāi)平方,因此映射是有序的;

        ②“任一”:就是說(shuō)對(duì)集合A中任何一個(gè)元素,集合B中都有元素和它對(duì)應(yīng),這是映射的存在性;

        ③“唯一”:對(duì)于集合A中的任何一個(gè)元素,集合B中都是唯一的元素和它對(duì)應(yīng),這是映射的唯一性;

       、堋霸诩螧中”:也就是說(shuō)A中元素的象必在集合B中,這是映射的封閉性.

        指出:根據(jù)定義,(2)(3)(4)這三個(gè)對(duì)應(yīng)都是集合A到集合B的映射;注意到其中(2)(4)是一對(duì)一,(3)是多對(duì)一

        思考:(1)為什么不是集合A到集合B的映射?

        回答:對(duì)于(1),在集合A中的每一個(gè)元素,在集合B中都有兩個(gè)元素與之相對(duì)應(yīng),因此,(1)不是集合A到集合B的映射

        思考:如果從對(duì)應(yīng)來(lái)說(shuō),什么樣的對(duì)應(yīng)才是一個(gè)映射?

        一對(duì)一,多對(duì)一是映射但一對(duì)多顯然不是映射

        辨析:

       、偃我庑裕河成渲械膬蓚(gè)集合A,B可以是數(shù)集、點(diǎn)集或由圖形組成的集合等;

       、谟行蛐裕河成涫怯蟹较虻模珹到B的映射與B到A的映射往往不是同一個(gè)映射;

       、鄞嬖谛裕河成渲屑螦的每一個(gè)元素在集合B中都有它的象;

       、芪ㄒ恍裕河成渲屑螦的任一元素在集合B中的象是唯一的;

       、莘忾]性:映射中集合A的任一元素的象都必須是B中的元素,不要求B中的每一個(gè)元素都有原象,即A中元素的象集是B的子集.

        映射三要素:集合A、B以及對(duì)應(yīng)法則 ,缺一不可;

        三、例題講解

        例1 判斷下列對(duì)應(yīng)是否映射?有沒(méi)有對(duì)應(yīng)法則?

        a e a e a e

        b f b f b f

        c g c g c g

        d d

        (是) (不是) (是)

        是映射的有對(duì)應(yīng)法則,對(duì)應(yīng)法則是用圖形表示出來(lái)的

        例2下列各組映射是否同一映射?

        a e a e d e

        b f b f b f

        c g c g c g

        例3判斷下列兩個(gè)對(duì)應(yīng)是否是集合A到集合B的映射?

       。1)設(shè)A={1,2,3,4},B={3,4,5,6,7,8, 9},對(duì)應(yīng)法則

       。2)設(shè) ,對(duì)應(yīng)法則

        (3) , ,

       。4)設(shè)

       。5) ,

        四、練習(xí):

        1.設(shè)A={1,2,3,4},B={3,4,5,6,7,8,9},集合A中的元素x按照對(duì)應(yīng)法則“乘2加1”和集合B中的元素2x+1對(duì)應(yīng).這個(gè)對(duì)應(yīng)是不是映射?(是)

        2.設(shè)A=N*,B={0,1},集合A中的元素x按照對(duì)應(yīng)法則“x除以2得的余數(shù)”和集合B中的元素對(duì)應(yīng).這個(gè)對(duì)應(yīng)是不是映射?(不是(A中沒(méi)有象))

        3.A=Z,B=N*,集合A中的元素x按照對(duì)應(yīng)法則“求絕對(duì)值”和集合B中的元素對(duì)應(yīng).這個(gè)對(duì)應(yīng)是不是映射? (是)

        4.A={0,1,2,4},B={0,1,4,9,64},集合A中的元素x按照對(duì)應(yīng)法則“f :a? b=(a?1)2”和集合B中的元素對(duì)應(yīng).這個(gè)對(duì)應(yīng)是不是映射? (是)

        5.在從集合A到集合B的映射中,下列說(shuō)法哪一個(gè)是正確的?

       。ˋ)B中的某一個(gè)元素b的原象可能不止一個(gè);(B)A中的某一個(gè)元素a的象可能不止一個(gè)(C)A中的兩個(gè)不同元素所對(duì)應(yīng)的象必不相同;

        (D)B中的兩個(gè)不同元素的原象可能相同

        6.下面哪一個(gè)說(shuō)法正確?

       。ˋ)對(duì)于任意兩個(gè)集合A與B,都可以建立一個(gè)從集合A到集合B的映射

       。˙)對(duì)于兩個(gè)無(wú)限集合A與B,一定不能建立一個(gè)從集合A到集合B的映射

       。–)如果集合A中只有一個(gè)元素,B為任一非空集合,那么從集合A到集合B只能建立一個(gè)映射

       。―)如果集合B只有一個(gè)元素,A為任一非空集合,則從集合A到集合B只能建立一個(gè)映射

      【 映射的概念教案】相關(guān)文章:

      《函數(shù)的概念》教案(通用10篇)08-22

      計(jì)劃的概念與作用11-30

      總結(jié)的作用和概念03-21

      集合與函數(shù)概念總結(jié)10-25

      一元二次方程概念的教學(xué)反思03-19

      六年級(jí)數(shù)學(xué)分?jǐn)?shù)概念歸納總結(jié)06-01

      《左傳》教案10-24

      存貨教案02-28

      愛(ài)蓮說(shuō)的經(jīng)典教案03-20

      《牧場(chǎng)上的家教案》經(jīng)典教案設(shè)計(jì)03-20

      用戶協(xié)議