在线视频国产欧美另类,偷拍亚洲一区一区二区三区,日韩中文字幕在线视频,日本精品久久久久中文字幕

<small id="qpqhz"></small>
  • <legend id="qpqhz"></legend>

      <td id="qpqhz"><strong id="qpqhz"></strong></td>
      <small id="qpqhz"><menuitem id="qpqhz"></menuitem></small>
    1. 實用文檔>全集與補(bǔ)集教案

      全集與補(bǔ)集教案

      時間:2024-07-10 02:26:27

      全集與補(bǔ)集教案

      全集與補(bǔ)集教案

      全集與補(bǔ)集教案

        目標(biāo):了解全集的意義,理解補(bǔ)集的概念,能利用Venn圖表達(dá)集合間的關(guān)系;滲透相對的觀點.

        重點:補(bǔ)集的概念.

        教學(xué)難點:補(bǔ)集的有關(guān)運(yùn)算.

        課 型:新授課

        教學(xué)手段:發(fā)現(xiàn)式教學(xué)法,通過引入實例,進(jìn)而對實例的分析,發(fā)現(xiàn)尋找其一般結(jié)果,歸納其普遍規(guī)律.

        教學(xué)過程:

        一、創(chuàng)設(shè)情境

        1.復(fù)習(xí)引入:復(fù)習(xí)集合的概念、子集的概念、集合相等的概念;兩集合的交集,并集.

        2.相對某個集合U,其子集中的元素是U中的一部分,那么剩余的元素也應(yīng)構(gòu)成一個集合,這兩個集合對于U構(gòu)成了相對的關(guān)系,這就驗證了“事物都是對立和統(tǒng)一的關(guān)系”。集合中的部分元素與集合之間關(guān)系就是部分與整體的關(guān)系.這就是本節(jié)課研究的話題 ——全集和補(bǔ)集。

        二、新課講解

        請同學(xué)們舉出類似的例子

        如:U={全班同學(xué)} A={班上男同學(xué)} B={班上女同學(xué)}

        特征:集合B就是集合U中除去集合A之后余下來的集合,可以用文氏圖表示。

        我們稱B是A對于全集U的補(bǔ)集。

        1、全集

        如果集合S包含我們要研究的各個集合,這時S可以看作一個全集。全集通常用字母U表示

        2、補(bǔ)集(余集)

        設(shè)U是全集,A是U的一個子集(即A U),則由U中所有不屬于A的元素組成的集合,叫作“A在U中的補(bǔ)集”,簡稱集合A的補(bǔ)集,記作 ,即

        補(bǔ)集的Venn圖表示:

        說明:補(bǔ)集的概念必須要有全集的限制

        練習(xí): ,則 。

        3、基本性質(zhì)

        注:借助venn圖的直觀性加以說明

        三、例題講解

        例1(P13例3)

        例2(P13例4) ①注重借助數(shù)軸對集合進(jìn)行運(yùn)算②利用結(jié)果驗證基本性質(zhì)

        四、課堂練習(xí)

        1.舉例,請?zhí)畛洌▍⒖迹?/p>

        (1)若S={2,3,4},A={4,3},則 SA=____________.

        (2)若S={三角形},B={銳角三角形},則 SB=___________.

        (3)若S={1,2,4,8},A= ,則 SA=_______.

        (4)若U={1,3,a2+2a+1},A={1,3}, UA={5},則a=_______

        (5)已知A={0,2,4}, UA={-1,1}, UB={-1,0,2},求B=_______

        (6)設(shè)全集U={2,3,m2+2m-3},a={|m+1|,2}, UA={5},求m.

        (7)設(shè)全集U={1,2,3,4},A={x|x2-5x+m=0,x∈U},求 UA、m.

        師生共同完成上述題目,解題的依據(jù)是定義

        例(1)解: SA={2}

        評述:主要是比較A及S的區(qū)別.

        例(2)解: SB={直角三角形或鈍角三角形}

        評述:注意三角形分類.

        例(3)解: SA=3

        評述:空集的定義運(yùn)用.

        例(4)解:a2+2a+1=5,a=-1±

        評述:利用集合元素的特征.

        例(5)解:利用文恩圖由A及 UA先求U={-1,0,1,2,4},再求B={1,4}.

        例(6)解:由題m2+2m-3=5且|m+1|=3解之 m=-4或m=2

        例(7)解:將x=1、2、3、4代入x2-5x+m=0中,m=4或m=6

        當(dāng)m=4時,x2-5x+4=0,即A={1,4}

        又當(dāng)m=6時,x2-5x+6=0,即A={2,3}

        故滿足題條件: UA={1,4},m=4; UB={2,3},m=6.

        評述:此題解決過程中滲透分類討論思想.

        2.P14練習(xí)題1、2、3、4、5

        五、回顧反思

        本節(jié)主要介紹全集與補(bǔ)集,是在子集概念的基礎(chǔ)上講述補(bǔ)集的概念,并介紹了全集的概念

        1.全集是一個相對的概念,它含有與研究的問題有關(guān)的各個集合的全部元素,通常用“U”表示全集.在研究不同問題時,全集也不一定相同.

        2.補(bǔ)集也是一個相對的概念,若集合A是集合S的子集,則S中所有不屬于A的元素組成的集合稱為S中子集A的補(bǔ)集(余集),記作 ,即 ={x }. 當(dāng)S不同時,集合A的補(bǔ)集也不同.

        六、作業(yè)布置

        1、P15習(xí)題4,5

        2、用集合A,B,C的交集、并集、補(bǔ)集表示下圖有色部分所代表的集合

      【全集與補(bǔ)集教案】相關(guān)文章:

      《女媧補(bǔ)天》教學(xué)反思(通用14篇)11-08

      三年級語文《女媧補(bǔ)天》評課稿(通用11篇)10-17

      《左傳》教案10-24

      存貨教案02-28

      愛蓮說的經(jīng)典教案03-20

      《牧場上的家教案》經(jīng)典教案設(shè)計03-20

      茶花賦教案04-06

      《什么蟲》教案01-08

      《文化苦旅》教案02-27

      大學(xué)教案的寫法10-05

      用戶協(xié)議