在线视频国产欧美另类,偷拍亚洲一区一区二区三区,日韩中文字幕在线视频,日本精品久久久久中文字幕

<small id="qpqhz"></small>
  • <legend id="qpqhz"></legend>

      <td id="qpqhz"><strong id="qpqhz"></strong></td>
      <small id="qpqhz"><menuitem id="qpqhz"></menuitem></small>
    1. 實用文檔>初中數(shù)學(xué)余弦的證明

      初中數(shù)學(xué)余弦的證明

      時間:2024-08-01 00:25:09

      初中數(shù)學(xué)余弦的證明

      初中數(shù)學(xué)余弦的證明

      初中數(shù)學(xué)余弦的證明

        我們學(xué)習(xí)過的余弦的證明包括了平面向量證法和平面幾何證法兩種。

        余弦的證明

        平面向量證法

        ∵如圖,有a+b=c (平行四邊形定則:兩個鄰邊之間的對角線代表兩個鄰邊大。

        ∴c·c=(a+b)·(a+b)

        ∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π—θ)

       。ㄒ陨洗煮w字符表示向量)

        又∵Cos(π—θ)=—CosC

        ∴c^2=a^2+b^2—2|a||b|Cosθ(注意:這里用到了三角函數(shù)公式)

        再拆開,得c^2=a^2+b^2—2*a*b*CosC

        即 CosC=(a^2+b^2—c^2)/2*a*b

        同理可證其他,而下面的CosC=(c^2—b^2—a^2)/2ab就是將CosC移到左邊表示一下。

        平面幾何證法

        在任意△ABC中

        做AD⊥BC,交BC于D

        ∠C所對的邊為c,∠B所對的邊為b,∠A所對的邊為a

        則有BD=cosB*c,AD=sinB*c,DC=BC—BD=a—cosB*c

        根據(jù)勾股定理可得:

        AC^2=AD^2+DC^2

        b^2=(sinB*c)^2+(a—cosB*c)^2

        b^2=(sinB*c)^2+a^2—2ac*cosB+(cosB)^2*c^2

        b^2=(sinB^2+cosB^2)*c^2—2ac*cosB+a^2

        b^2=c^2+a^2—2ac*cosB

        cosB=(c^2+a^2—b^2)/2ac

        不論什么樣的三角形證明,都離不開的一個重要知識就是勾股定理。

        初中數(shù)學(xué)知識點總結(jié):平面直角坐標(biāo)系

        下面是對平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

        平面直角坐標(biāo)系

        平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。

        水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。

        平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合

        三個規(guī)定:

        ①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

       、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

       、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

        相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

        初中數(shù)學(xué)知識點:平面直角坐標(biāo)系的構(gòu)成

        對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

        平面直角坐標(biāo)系的構(gòu)成

        在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點O稱為直角坐標(biāo)系的原點。

        通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

        初中數(shù)學(xué)知識點:點的坐標(biāo)的性質(zhì)

        下面是對數(shù)學(xué)中點的坐標(biāo)的性質(zhì)知識學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

        點的坐標(biāo)的性質(zhì)

        建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點,我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點。

        對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點C的坐標(biāo)。

        一個點在不同的象限或坐標(biāo)軸上,點的坐標(biāo)不一樣。

        希望上面對點的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。

        初中數(shù)學(xué)知識點:因式分解的一般步驟

        關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識講解。

        因式分解的一般步驟

        如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

        通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

        注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

        相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。

        初中數(shù)學(xué)知識點:因式分解

        下面是對數(shù)學(xué)中因式分解內(nèi)容的知識講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。

        因式分解

        因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

        因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

        因式分解與整式乘法的關(guān)系:m(a+b+c)

        公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

        公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

        提取公因式步驟:

        ①確定公因式。②確定商式③公因式與商式寫成積的形式。

        分解因式注意;

       、俨粶(zhǔn)丟字母

       、诓粶(zhǔn)丟常數(shù)項注意查項數(shù)

       、垭p重括號化成單括號

       、芙Y(jié)果按數(shù)單字母單項式多項式順序排列

       、菹嗤蚴綄懗蓛绲男问

       、奘醉椮(fù)號放括號外

       、呃ㄌ杻(nèi)同類項合并。

        通過上面對因式分解內(nèi)容知識的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。

      【初中數(shù)學(xué)余弦的證明】相關(guān)文章:

      初中數(shù)學(xué)考點總結(jié)03-20

      初中數(shù)學(xué)小課題研修報告10-11

      釋放證明04-06

      初中數(shù)學(xué)的興趣小組計劃(精選12篇)03-28

      初中數(shù)學(xué)小課題研修報告范文(通用7篇)08-17

      辦理停車泊位證明03-20

      團(tuán)關(guān)系轉(zhuǎn)出證明02-25

      第一學(xué)期初中數(shù)學(xué)教研小組工作計劃03-31

      經(jīng)理聘任證明五篇02-06

      先進(jìn)雙聯(lián)戶事跡證明材料03-20

      用戶協(xié)議