在线视频国产欧美另类,偷拍亚洲一区一区二区三区,日韩中文字幕在线视频,日本精品久久久久中文字幕

<small id="qpqhz"></small>
  • <legend id="qpqhz"></legend>

      <td id="qpqhz"><strong id="qpqhz"></strong></td>
      <small id="qpqhz"><menuitem id="qpqhz"></menuitem></small>
    1. 高一下學期數(shù)學重點知識歸納筆記

      時間:2024-09-09 10:22:22 筆記 我要投稿
      • 相關推薦

      高一下學期數(shù)學重點知識歸納筆記

      高一下學期數(shù)學重點知識歸納筆記1

        函數(shù)的性質:

      高一下學期數(shù)學重點知識歸納筆記

        函數(shù)的.單調性、奇偶性、周期性

        單調性:定義:注意定義是相對與某個具體的區(qū)間而言。

        判定方法有:定義法(作差比較和作商比較)

        導數(shù)法(適用于多項式函數(shù))

        復合函數(shù)法和圖像法。

        應用:比較大小,證明不等式,解不等式。

        奇偶性:定義:注意區(qū)間是否關于原點對稱,比較f(x)與f(-x)的關系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。

        判別方法:定義法,圖像法,復合函數(shù)法

        應用:把函數(shù)值進行轉化求解。

        周期性:定義:若函數(shù)f(x)對定義域內的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。

        其他:若函數(shù)f(x)對定義域內的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.

        應用:求函數(shù)值和某個區(qū)間上的函數(shù)解析式。

      高一下學期數(shù)學重點知識歸納筆記2

        求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數(shù)法和交軌法等。

        直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

        定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

        相關點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。

        參數(shù)法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數(shù)t的.關系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

        交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

      高一下學期數(shù)學重點知識歸納筆記3

        函數(shù)的應用

        1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

        2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:

        方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.

        3、函數(shù)零點的求法:

        求函數(shù)的零點:

        (代數(shù)法)求方程的'實數(shù)根;

        (幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質找出零點.

        4、二次函數(shù)的零點:

        二次函數(shù)。

        1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點。

        2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點。

        3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點。

      【高一下學期數(shù)學重點知識歸納筆記】相關文章:

      高二數(shù)學重點知識歸納筆記08-13

      高一數(shù)學知識點重點總結歸納04-29

      高二化學重點知識歸納筆記09-03

      高一數(shù)學必修一知識點歸納筆記04-26

      高一歷史重點知識點歸納總結02-12

      高一數(shù)學下學期重點知識和公式總結11-22

      高一數(shù)學必修二重點知識筆記09-03

      化學高一必修一知識點歸納筆記02-27

      高一數(shù)學的知識點歸納總結07-11